The study of social networks-where people are located, geographically, and how they might be connected to one another-is a current hot topic of interest, because of its immediate relevance to important applications, from devising efficient immunization techniques for the arrest of epidemics to the design of better transportation and city planning paradigms to the understanding of how rumors and opinions spread and take shape over time. We develop a Spatial Social Complex Network (SSCN) model that captures not only essential connectivity features of real-life social networks, including a heavy-tailed degree distribution and high clustering, but also the spatial location of individuals, reproducing Zipf 's law for the distribution of city populations as well as other observed hallmarks. We then simulate Milgram's Small-World experiment on our SSCN model, obtaining good qualitative agreement with the known results and shedding light on the role played by various network attributes and the strategies used by the players in the game. This demonstrates the potential of the SSCN model for the simulation and study of the many social processes mentioned above, where both connectivity and geography play a role in the dynamics.
A main challenge in target localization arises from the lack of reliable distance measures. This issue is especially pronounced in indoor settings due to the presence of walls, floors, furniture, and other dynamically changing conditions such as the movement of people and goods, varying temperature and air flows. Here, we develop a new computational framework to estimate the location of a target without the need for reliable distance measures. The method, which we term Ordinal UNLOC, uses only ordinal data obtained from comparing the signal strength from anchor pairs at known locations to the target. Our estimation technique utilizes rank aggregation, function learning as well as proximity-based unfolding optimization. As a result, it yields accurate target localization for common transmission models with unknown parameters and noisy observations that are reminiscent of practical settings. Our results are validated by both numerical simulations and hardware experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.