Regolith, or unconsolidated materials overlying bedrock, exists as an active zone for many geological, geomorphological, hydrological and ecological processes. This zone and its processes are foundational to wide-ranging human needs and activities such as water supply, mineral exploration, forest harvesting, agriculture, and engineered structures. Regolith thickness, or depth-to-bedrock (DTB), is typically unavailable or restricted to finer scale assessments because of the technical and cost limitations of traditional drilling, seismic, and ground-penetrating radar surveys. The objective of this study was to derive a high-resolution (10 m2) DTB model for the province of New Brunswick, Canada as a case study. This was accomplished by developing a DTB database from publicly available soil profiles, boreholes, drill holes, well logs, and outcrop transects (n = 203,238). A Random Forest model was produced by modeling the relationships between DTB measurements in the database to gridded datasets derived from both a LiDAR-derived digital elevation model and photo-interpreted surficial geology delineations. In developing the Random Forest model, DTB measurements were split 70:30 for model development and validation, respectively. The DTB model produced an R2 = 92.8%, MAE = 0.18 m, and RMSE = 0.61 m for the training, and an R2 = 80.3%, MAE = 0.18 m, and RMSE = 0.66 m for the validation data. This model provides an unprecedented resolution of DTB variance at a landscape scale. Additionally, the presented framework provides a fundamental understanding of regolith thickness across a post-glacial terrain, with potential application at the global scale.
Improving the accuracy of digital elevation is essential for reducing hydrotopographic derivation errors pertaining to, e.g., flow direction, basin borders, channel networks, depressions, flood forecasting, and soil drainage. This article demonstrates how a gain in this accuracy is improved through digital elevation model (DEM) fusion, and using LiDAR-derived elevation layers for conformance testing and validation. This demonstration is done for the Province of New Brunswick (NB, Canada), using five province-wide DEM sources (SRTM 90 m; SRTM 30 m; ASTER 30 m; CDED 22 m; NB-DEM 10 m) and a five-stage process that guides the re-projection of these DEMs while minimizing their elevational differences relative to LiDAR-captured bareearth DEMs, through calibration and validation. This effort decreased the resulting non-LiDAR to LiDAR elevation differences by a factor of two, reduced the minimum distance conformance between the non-LiDAR and LiDARderived flow channels to ± 10 m at 8.5 times out of 10, and dropped the nonLiDAR wet-area percentages of false positives from 59% to 49%, and of false negatives from 14% to 7%. While these reductions are modest, they are nevertheless not only consistent with already existing hydrographic data layers informing about stream and wet-area locations, they also extend these data layers across the province by comprehensively locating previously unmapped flow channels and wet areas.
Airborne laser scanning (ALS) has emerged as a technology capable of generating descriptors of vegetation structure and best available terrain information. Research and operational implementations of ALS data have highlighted their value for characterizing forest structure and generating spatially explicit and objective spatial coverages and mapping products for forest management. Continued emphasis to enhance forest stewardship is promoting novel methods to integrate ALS to detail non-timber ecosystem values like habitat, soil, and water. Standardized criteria and indicator frameworks such as the Canadian Council of Forest Ministers provide a reliable starting point for where ALS has opportunities to characterize ecosystems objectively regardless of location. In this review of primarily Canadian work, we highlight how ALS is becoming an increasingly viable technology for deriving meaningful indicators to meet sustainable forest management criteria. We review and highlight the value of ALS for quantifying indicators of biological diversity, ecosystem condition and productivity, soil and water, and the role of forests in global ecological cycles. We conclude by highlighting the need for increased education, tech transfer, flexible software, and reporting frameworks alongside five key considerations for using ALS to derive meaningful indicators of sustainable forest management.
There is a growing demand for standardized, easily accessible, and detailed information pertaining to soil and its variability across the landscape. Typically, this information is only available for selected areas in the form of local or regional soil surveys reports which are difficult, and costly, to develop. Additionally, soil surveying protocols have changed with time, resulting in inconsistencies between surveys conducted over different periods. This article describes systematic procedures applied to generate an aspatial, terminologically, and unit-consistent, database for forest soils from county-based soil survey reports for the province of New Brunswick, Canada. The procedures involved (i) amalgamating data from individual soil surveys following a hierarchical framework, (ii) summarizing and grouping soil information by soil associations, (iii) assigning correct soil associates to each association, with each soil associate distinguished by drainage classification, (iv) assigning pedologically correct horizon sequences, as identified in the original soil surveys, to each soil associate, (v) assigning horizon descriptors and measured soil properties to each horizon, as outlined by the Canadian System of Soil Classification, and (vi) harmonizing units of measurement for individual soil properties. Identification and summarization of all soil associations (and corresponding soil associates) was completed with reference to the principal soil-forming factors, namely soil parent material, topographic surface expressions, soil drainage, and dominant vegetation type(s). This procedure, utilizing 17 soil surveys, resulted in an amalgamated database containing 106 soil associations, 243 soil associates, and 522 soil horizon sequences summarizing the variability of forest soil conditions across New Brunswick.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.