The modern datacenter's computing capabilities have far outstripped the applications running within and have become a hidden cost of doing business due to how software is architected and deployed. Resources are over-allocated to monolithic applications that sit idle for large parts of the day. If applications were architected and deployed differently, shared services could be used for multiple applications as needed. When combined with powerful orchestration software, containerized microservices can both deploy and dynamically scale applications from very small to very large within moments—scaling the application not only across a single datacenter but across all datacenters where the application(s) are deployed.In this paper, we analyze data from an application(s) deployed both as a single monolithic codebase and as a containerized application using microservice-based architecture to calculate the performance and computing resource waste are both architected and deployed. A modern approach is offered as a solution as a path from how to go from a monolithic codebase to a more efficient, reliable, scalable, and less costly deployment model.
The modern datacenter's computing capabilities have far outstripped the applications running within and have become a hidden cost of doing business due to how software is architected and deployed. Resources are over-allocated to monolithic applications that sit idle for large parts of the day. If applications were architected and deployed differently, shared services could be used for multiple applications as needed. When combined with powerful orchestration software, containerized microservices can both deploy and dynamically scale applications from very small to very large within moments—scaling the application not only across a single datacenter but across all datacenters where the application(s) are deployed. In this paper, we analyze data from an application(s) deployed both as a single monolithic codebase and as a containerized application using microservice-based architecture to calculate the performance and computing resource waste are both architected and deployed. A modern approach is offered as a solution as a path from how to go from a monolithic codebase to a more efficient, reliable, scalable, and less costly deployment model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.