Understanding the differences between contrasting groups is a fundamental task in data analysis. This realization has led to the development of a new special purpose data mining technique, contrast-set mining. We undertook a study with a retail collaborator to compare contrast-set mining with existing rule-discovery techniques. To our surprise we observed that straightforward application of an existing commercial rule-discovery system, Magnum Opus, could successfully perform the contrast-set-mining task. This led to the realization that contrast-set mining is a special case of the more general rule-discovery task. We present the results of our study together with a proof of this conclusion.
Abstract. X-ray mammography is the current method for screening for breast cancer, and like any technique, has its limitations. Several groups have reported differences in the X-ray scattering patterns of normal and tumour tissue from the breast. This gives rise to the hope that X-ray scatter analysis techniques may lead to a more accurate and cost effective method of diagnosing beast cancer which lends itself to automation. This is a particularly challenging exercise due to the inherent complexity of the information content in X-ray scatter patterns from complex hetrogenous tissue samples. We use a simple naïve Bayes classier, coupled with Equal Frequency Discretization (EFD) as our classification system. High-level features are extracted from the low-level pixel data. This paper reports some preliminary results in the ongoing development of this classification method that can distinguish between the diffraction patterns of normal and cancerous tissue, with particular emphasis on the invention of features for classification.Keywords. Knowledge discovery and data mining; Applications.Pre-publication draft of Abstract. X-ray mammography is the current method for screening for breast cancer, and like any technique, has its limitations. Several groups have reported differences in the X-ray scattering patterns of normal and tumour tissue from the breast. This gives rise to the hope that X-ray scatter analysis techniques may lead to a more accurate and cost effective method of diagnosing beast cancer which lends itself to automation. This is a particularly challenging exercise due to the inherent complexity of the information content in X-ray scatter patterns from complex hetrogenous tissue samples. We use a simple naïve Bayes classier, coupled with Equal Frequency Discretization (EFD) as our classification system. High-level features are extracted from the low-level pixel data. This paper reports some preliminary results in the ongoing development of this classification method that can distinguish between the diffraction patterns of normal and cancerous tissue, with particular emphasis on the invention of features for classification.paper accepted for publication in the Proceedings of AI'03 LNAI 2903 pp 677 -685 Publisher: Springer A Case Study in Feature Invention for Breast Cancer
Finding differences among two or more groups is an important data-mining task. For example, a retailer might want to know what the different is in customer purchasing behaviors during a sale compared to a normal trading day. With this information, the retailer may gain insight into the effects of holding a sale and may factor that into future campaigns. Another possibility would be to investigate what is different about customers who have a loyalty card compared to those who don’t. This could allow the retailer to better understand loyalty cardholders, to increase loyalty revenue, or to attempt to make the loyalty program more appealing to non-cardholders. This article gives an overview of such group mining techniques. First, we discuss two data-mining methods designed specifically for this purpose—Emerging Patterns and Contrast Sets. We will discuss how these two methods relate and how other methods, such as exploratory rule discovery, can also be applied to this task. Exploratory data-mining techniques, such as the techniques used to find group differences, potentially can result in a large number of models being presented to the user. As a result, filter mechanisms can be a useful way to automatically remove models that are unlikely to be of interest to the user. In this article, we will examine a number of such filter mechanisms that can be used to reduce the number of models with which the user is confronted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.