The mammalian superior colliculus and its non-mammalian homolog, the optic tectum (OT), are midbrain structures that integrate multimodal sensory inputs and guide non-voluntary movements in response to prevalent stimuli. Recent studies have implicated this structure as a possible site affected in Autism Spectrum Disorder (ASD). Interestingly, fetal exposure to valproic acid (VPA) has also been associated with an increased risk of ASD in humans and animal models. Therefore, we took the approach of determining the effects of VPA treatment on zebrafish OT development as a first step in identifying the mechanisms that allow its formation. We describe the normal OT development during the first 5 days of development and show that in VPA treated embryos, neuronal specification and neuropil formation was delayed. VPA treatment was most detrimental during the first three days of development and did not appear to be linked to oxidative stress. In conclusion, our work provides a foundation for research into mechanisms driving OT development, as well as the relationship between the OT, VPA, and ASD.
The mammalian superior colliculus and its non-mammalian homolog, the optic tectum (OT), are midbrain structures that integrate multimodal sensory inputs and guide non-voluntary movements in response to prevalent stimuli. Recent studies have implicated this structure as a possible site affected in Autism Spectrum Disorder (ASD). Interestingly, fetal exposure to valproic acid (VPA) has also been associated with an increased risk of ASD in humans and animal models. Therefore, we took the approach of determining the effects of VPA treatment on zebrafish OT development as a first step in identifying the mechanisms that allow its formation. We describe the normal OT development during the first 5 days of development and show that in VPA treated embryos, while proliferation of the OT neuroepithelium continued, neuronal specification stalled. This was followed by impairment of neurite extension and complexity, suggesting that in addition to neurogenesis, VPA treatment affects axonogenesis and dendritogenesis. VPA treatment was most detrimental during the first three days of development and did not appear to be linked to oxidative stress. In conclusion, our work provides a foundation for research into mechanisms driving OT development, as well as the relationship between the OT, VPA, and ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.