Wind power is a reliable form of energy, and increases in wind turbine efficiency have helped to provide cost-effective power to an ever-growing portion of the world. However, there are physical limits to the amount of energy that can be removed from an airstream using a single wind turbine system. This paper explores the possibility of increasing power production using two counter-rotating sets of wind turbine blades. A review of design characteristics, such as number of blades, blade angle of twist, chord length, and generator efficiencies, resulted in the design of a counter-rotating wind turbine using three different National Renewable Energy Laboratory (NREL) cross-sectional blade profiles for the blades. A three-blade front system and two three-blade rear systems were studied. The blade prototypes were modeled in SolidWorks ® , produced using a Dimension ® 3D printer, and then tested using two Parallax™ four-pole stepper motors as generators in a model 406B ELD wind tunnel. Initial testing showed a power increase of 101.4% at 25 mph. This power increase can be attributed to the addition of the second generator and a rear-blade system that was a mirror image of the front system. Testing was performed between 15 mph and 40 mph in 5-mph increments. The counter-rotating system reached its optimum operating efficiency at 25 mph, at which 12.6% of the energy in the air was converted into usable power. This outcome compares to a 6.25% power conversion for the frontblade system. Preliminary results indicate that a counter-rotating assembly is promising for increasing energy extraction from a column of air. Additional testing should focus on system efficiency based on blade angle of twist, chord length, and generator efficiencies. A power increase of 101.4% with the addition of the rear-blade system indicates that the front-system efficiency has not been maximized. The next logical step is designing blade systems for maximum total system efficiency at specified wind speeds. Additionally, it would be valuable to determine if counter-rotating systems could expand the range of possible turbine locations by lowering the required average wind speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.