In this research, our focus is the use of ultrasound thermal process to extract flavor and caffeine from coffee. The different operating conditions for extraction experiments are executed and the results are also compared. The results show that coffee flavor is not enhanced with the increase of temperature because the volatile degree of coffee flavor components is quick and easy to be reached at high temperatures. From the experimental results, it can be found that using low vibration frequency is better than using high vibration frequency. Also, caffeine will be reached into the saturated state at the 15th second of the extracting time and the quantity of caffeine augments with the increase of temperature.
In this paper, Taguchi method is applied to optimize ultrasound thermal process for extracting caffeine and flavor from coffee. The use of ultrasound can abridge experiments in cost, energy loss and time; the different operating conditions for extraction experiments are executed and the results are also compared. The results show that the best design factors for caffeine are 95℃ of extraction temperature, 28 kHz of operating frequency and 30 s of extraction time. The proposed optimized extraction method is efficient and energy-saving compared with the general process for making coffee.
Major cancer deaths can be ascribed to distant metastasis to which the assembly of pericellular fibronectin (periFN) on suspended tumor cells (STCs) in the bloodstream that facilitate endothelial attachment can lead. Even though mangosteen pericarps (MP) extracts and the major component α-mangostin (α-MG) exhibit potent cancer chemopreventive properties, whether they can prophylactically and therapeutically be used as dietary nutraceuticals to prevent distant metastasis by suppressing periFN assembly on STCs within the circulation remains obscure. Immunofluorescence staining, MTT assays, flow cytometric assays, immunoblotting, and experimental metastasis mouse models were used to detect the effects of MP extracts or α-MG on periFN on STCs, tumor cell proliferation and apoptosis, the AKT activity, and tumor lung metastasis. The periFN assembly on STCs was significantly diminished upon treatments of STCs with either α-MG or MP extracts in a dose-dependent manner without inhibiting cell proliferation and viability due to increased AKT activity. Pretreatment of STCs with α-MG appeared to suppress tumor lung metastasis and prolong mouse survival rates. Oral gavage with MP extracts could therapeutically, but not prophylactically, prevent lung metastasis of STCs. We concluded that MP extracts or the major component α-MG may therapeutically serve as a potent anti-metastatic nutraceutical.
This study performs a series of experimental investigations to determine the temperature and pressure conditions which maximize the quantities of caffeine and EGCG extracted from green tea using a supercritical fluid extraction process with a carbon dioxide solvent. The experimental data are then used to construct a fuzzy model for predicting the extractant quantities given the temperature and pressure conditions of the extraction process. The average discrepancy between the experimental results and the predicted results for the quantities of caffeine and EGCG extracted at temperatures of 40°C, 50°C and 60°C, respectively, is found to be just 7.38%, thus confirming the viability of the fuzzy model as a predictive tool. Overall, the results reveal that a temperature of 40°C and a pressure of 2500 psi represent the optimum extraction conditions for both caffeine and EGCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.