Acoustic word embeddings -fixed-dimensional vector representations of variable-length spoken word segmentshave begun to be considered for tasks such as speech recognition and query-by-example search. Such embeddings can be learned discriminatively so that they are similar for speech segments corresponding to the same word, while being dissimilar for segments corresponding to different words. Recent work has found that acoustic word embeddings can outperform dynamic time warping on query-by-example search and related word discrimination tasks. However, the space of embedding models and training approaches is still relatively unexplored. In this paper we present new discriminative embedding models based on recurrent neural networks (RNNs). We consider training losses that have been successful in prior work, in particular a cross entropy loss for word classification and a contrastive loss that explicitly aims to separate same-word and different-word pairs in a "Siamese network" training setting. We find that both classifier-based and Siamese RNN embeddings improve over previously reported results on a word discrimination task, with Siamese RNNs outperforming classification models. In addition, we present analyses of the learned embeddings and the effects of variables such as dimensionality and network structure.Index Termsacoustic word embeddings, recurrent neural networks, Siamese networks
Query-by-example search often uses dynamic time warping (DTW) for comparing queries and proposed matching segments. Recent work has shown that comparing speech segments by representing them as fixed-dimensional vectors -acoustic word embeddings -and measuring their vector distance (e.g., cosine distance) can discriminate between words more accurately than DTW-based approaches. We consider an approach to queryby-example search that embeds both the query and database segments according to a neural model, followed by nearestneighbor search to find the matching segments. Earlier work on embedding-based query-by-example, using template-based acoustic word embeddings, achieved competitive performance. We find that our embeddings, based on recurrent neural networks trained to optimize word discrimination, achieve substantial improvements in performance and run-time efficiency over the previous approaches.
During language acquisition, infants have the benefit of visual cues to ground spoken language. Robots similarly have access to audio and visual sensors. Recent work has shown that images and spoken captions can be mapped into a meaningful common space, allowing images to be retrieved using speech and vice versa. In this setting of images paired with untranscribed spoken captions, we consider whether computer vision systems can be used to obtain textual labels for the speech. Concretely, we use an image-to-words multi-label visual classifier to tag images with soft textual labels, and then train a neural network to map from the speech to these soft targets. We show that the resulting speech system is able to predict which words occur in an utterance-acting as a spoken bag-of-words classifier-without seeing any parallel speech and text. We find that the model often confuses semantically related words, e.g. "man" and "person", making it even more effective as a semantic keyword spotter.
No abstract
Direct acoustics-to-word (A2W) systems for end-to-end automatic speech recognition are simpler to train, and more efficient to decode with, than sub-word systems. However, A2W systems can have difficulties at training time when data is limited, and at decoding time when recognizing words outside the training vocabulary. To address these shortcomings, we investigate the use of recently proposed acoustic and acoustically grounded word embedding techniques in A2W systems. The idea is based on treating the final pre-softmax weight matrix of an AWE recognizer as a matrix of word embedding vectors, and using an externally trained set of word embeddings to improve the quality of this matrix. In particular we introduce two ideas: (1) Enforcing similarity at training time between the external embeddings and the recognizer weights, and (2) using the word embeddings at test time for predicting out-of-vocabulary words. Our word embedding model is acoustically grounded, that is it is learned jointly with acoustic embeddings so as to encode the words' acoustic-phonetic content; and it is parametric, so that it can embed any arbitrary (potentially out-of-vocabulary) sequence of characters. We find that both techniques improve the performance of an A2W recognizer on conversational telephone speech.Index Termsautomatic speech recognition, direct acousticsto-word models, connectionist temporal classification, acoustic word embeddings, triplet contrastive loss
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.