Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system (validation RMSEs < 1 C). Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
An understanding of the mechanisms driving the cyclic relationship between piscivorous sport fish and their food base is needed in systems where predator and prey are tightly coupled. To understand the dynamics between striped bass Morone saxatilis and threadfin shad Dorosoma petenense in Lake Powell, Utah-Arizona, we (1) synthesized and evaluated 20 years of historical data on temperature, diet, growth, and abundance of these fish, (2) collected similar data on a finer scale in 2003-2004, (3) used components of this data set to develop specific conversions between coarser historic data and present data, and (4) modeled striped bass and threadfin shad dynamics within a bioenergetics framework. We estimated the consumption of threadfin shad by age-0, subadult, and adult striped bass in Lake Powell from 1985 to 2003. During this period, threadfin shad abundance peaked at approximately 5-to 7-year intervals and striped bass growth, condition, and abundance corresponded closely to peaks in threadfin shad foraging. Individual consumption of threadfin shad by striped bass was highest for adults followed by subadult and age-0 fish; scaling individual consumption up to the population level resulted in highly variable subadult consumption that fluctuated from highs of about 1.2 million kg (18.4 kg/ha) to lows of about 0.3 million kg (4.6 kg/ha) on a 1-to 2-year cycle. Despite these fluctuations, the consumption of threadfin shad was dominated by subadult striped bass, which appeared to control threadfin shad numbers in all but the highest peak years of shad abundance. Based on bioenergetics output, striped bass demonstrate a type II functional feeding response; consumption rates reach an asymptote when the threadfin shad biomass index exceeds 10,000 kg/year. We demonstrate a modeling approach that allowed us to evaluate the large fluctuations in predator and prey populations, which often become evident only over long time periods. Our results increase our understanding of the Lake Powell ecosystem and highlight areas for future study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.