Cortical plasticity is thought to be important for the establishment, consolidation, and retrieval of permanent memory. Hippocampal long-term potentiation (LTP), a cellular mechanism of learning and memory, requires the activation of glutamate N-methyl-D-aspartate (NMDA) receptors. In particular, it has been suggested that NR2A-containing NMDA receptors are involved in LTP induction, whereas NR2B-containing receptors are involved in LTD induction in the hippocampus. However, LTP in the prefrontal cortex is less well characterized than in the hippocampus. Here we report that the activation of the NR2B and NR2A subunits of the NMDA receptor is critical for the induction of cingulate LTP, regardless of the induction protocol. Furthermore, pharmacological or genetic blockade of the NR2B subunit in the cingulate cortex impaired the formation of early contextual fear memory. Our results demonstrate that the NR2B subunit of the NMDA receptor in the prefrontal cortex is critically involved in both LTP and contextual memory.
Trace fear memory requires the activity of the anterior cingulate cortex (ACC) and is sensitive to attention-distracting stimuli. Fragile X syndrome is the most common form of mental retardation with many patients exhibiting attention deficits. Previous studies in fragile X mental retardation 1 (FMR1) knock-out (KO) mice, a mouse model for fragile X, focused mainly on hippocampal-dependent plasticity and spatial memory. We demonstrate that FMR1 knock-out mice show a defect in trace fear memory without changes in locomotion, anxiety, and pain sensitivity. Whole-cell path-clamp recordings in the ACC show that long-term potentiation (LTP) was completely abolished. A similar decrease in LTP was found in the lateral amygdala, another structure implicated in fear memory. No significant changes were found in basal synaptic transmission. This suggests that synaptic plasticity in the ACC and amygdala of FMR1 KO mice plays an important role in the expression of behavioral phenotypes similar to the symptoms of fragile X syndrome.
Transgenic overexpression of NMDA NR2B receptors in forebrain regions increased behavioral responses to persistent inflammatory pain. However, it is not known whether inflammation leads to the upregulation of NR2B receptors in these regions. Here, we show that peripheral inflammation increased the expression of NMDA NR2B receptors and NR2B receptor-mediated synaptic currents in the anterior cingulate cortex (ACC). In freely moving mice, the increase in NR2B receptors after inflammation contributed to enhanced NMDA receptor-mediated responses in the ACC. Inhibition of NR2B receptors in the ACC selectively reduced behavioral sensitization related to inflammation. Our results demonstrate that the upregulation of NR2B receptors in the ACC contributes to behavioral sensitization caused by inflammation.
The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in learning and memory. Recent studies show that painful stimuli activate the prefrontal cortex and that brain chemistry is altered in this area in patients with chronic pain. Components of the CNS that are involved in pain transmission and modulation, from the spinal cord to the ACC, are very plastic and undergo rapid and long-term changes after injury. Patients suffering from chronic pain often complain of memory and concentration difficulties, but little is known about the neural circuitry underlying these deficits. To address this question, we analyzed synaptic transmission in the ACC from mice with chronic pain induced by hindpaw injection of complete Freund's adjuvant (CFA). In vitro whole-cell patch-clamp recordings revealed a significant enhancement in neurotransmitter release probability in ACC synapses from mice with chronic pain. Trace fear memory, which requires sustained attention and the activity of the ACC, was impaired in CFA-injected mice. Using knock-out mice, we found that calmodulin-stimulated adenylyl cyclases, AC1 and/or AC8, were crucial in mediating the long-lasting enhanced presynaptic transmitter release in the ACC of mice with chronic pain. Our findings provide strong evidence that presynaptic alterations caused by peripheral inflammation contribute to memory impairments after injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.