Background: It is not known whether NR4A1 plays a role in ER stress-induced β-cell apoptosis.Results: NR4A1 expression in β-cells or islets correlated positively with Survivin expression and negatively with CHOP expression and apoptosis rate upon treatment with ER stress inducers.Conclusion: NR4A1 protects β-cells from ER stress-induced apoptosis by up-regulating Survivin and down-regulating CHOP expression.Significance: Our findings provide clues to prevent diabetes.
The role and mechanism of signal transducer and activator of transcription 5B (STAT5B) in adipogenesis remain unclear. In this study, our data showed that Males absent on the first (MOF) protein expression was increased during 3 T3-L1 preadipocytes differentiation accompanied with STAT5B expression increasing. Over-expression STAT5B enhanced MOF promoter trans-activation in HeLa cells. Mutagenesis assay and ChIP analysis exhibited that STAT5B was able to bind MOF promoter. Knocking-down STAT5B in 3 T3-L1 preadipocytes led to decreased expression of MOF, but resulted in increased expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid-binding protein 4 (Fabp4), which were important factors or enzymes for adipogenesis. We also found that knocking-down MOF in 3 T3-L1 preadipocytes resulted in increased expression of PPARγ, C/EBPα and Fabp4, which was in the same trend as STAT5B knocking-down. Over-expression MOF resulted in reduced promoter trans-activation activity of C/EBPα. These results suggest that STAT5B and MOF work as negative regulators in adipogenesis, and STAT5B modulates preadipocytes differentiation partially by regulating MOF expression.
Summary
The endoplasmic reticulum (ER)-resident transmembrane protein kinase/RNase Ire1 is a conserved sensor of the cellular unfolded protein response and has been implicated in lipid homeostasis, including lipid synthesis and transport, across species. Here we report a novel catabolic role of Ire1 in regulating lipid mobilization in
Drosophila
. We found that Ire1 is activated by nutrient deprivation, and, importantly, fat body-specific
Ire1
deficiency leads to increased lipid mobilization and sensitizes flies to starvation, whereas fat body Ire1 overexpression results in the opposite phenotypes. Genetic interaction and biochemical analyses revealed that Ire1 regulates lipid mobilization by promoting Xbp1s-associated FoxO degradation and suppressing FoxO-dependent lipolytic programs. Our results demonstrate that Ire1 is a catabolic sensor and acts through the Xbp1s-FoxO axis to hamper the lipolytic response during chronic food deprivation. These findings offer new insights into the conserved Ire1 regulation of lipid homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.