Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity/vorticity degree of freedom and higher skyrmion density result in intriguing new properties and enhanced functionality. We report here on the experimental observation of a skyrmion lattice (SkL) phase with large topological Hall effect and an incommensurate helical pitch as small as 2.8 nm in metallic Gd3Ru4Al12, which materializes a breathing kagomé lattice of Gadolinium moments. The magnetic structure of several ordered phases, including the SkL, is determined by resonant x-ray diffraction as well as small angle neutron scattering. The SkL and helical phases are also observed directly using Lorentz-transmission electron microscopy. Among several competing phases, the SkL is promoted over a low-temperature transverse conical state by thermal fluctuations in an intermediate range of magnetic fields.
Spirals and helices are common motifs of long-range order in magnetic solids, and they may also be organized into more complex emergent structures such as magnetic skyrmions and vortices. A new type of spiral state, the spiral spin-liquid, in which spins fluctuate collectively as spirals, has recently been predicted to exist. Here, using neutron scattering techniques, we experimentally prove the existence of a spiral spin-liquid in MnSc2S4 by directly observing the 'spiral surface' -a continuous surface of spiral propagation vectors in reciprocal space. We elucidate the multi-step ordering behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase on application of a magnetic field. Our results prove the effectiveness of the J1-J2 Hamiltonian on the diamond lattice as a model for the spiral spin-liquid state in MnSc2S4, and also demonstrate a new way to realize a magnetic vortex lattice.Magnetic frustration, where magnetic moments (spins) are coupled through competing interactions that cannot be simultaneously satisfied 1 , usually leads to highly cooperative spin fluctuations 2,3 and unconventional longrange magnetic order 4,5 . An archetypal ordering in the presence of frustration is the spin spiral. Competing interactions and spiral orders give rise to many phenomena in magnetism, including the multitudinous magnetic phases of rare earth metals 6 , domains with multiferroic properties 7,8 , and topologically non-trivial structures such as the emergent skyrmion lattice 9,10 .Recently, a new spiral state -a spiral spin-liquid in which the ground states are a massively degenerate set of coplanar spin spirals -was predicted to exist in the J 1 -J 2 model on the diamond lattice (see Fig. 1a) [11][12][13] . Although the diamond lattice is bipartite, and therefore unfrustrated at the near-neighbour (J 1 ) level, the second-neighbour coupling (J 2 ) can generate strong competition. For classical spins, mean-field calculations show that when |J 2 /J 1 | > 0.125 the spiral spin-liquid appears, and that it is signified by an unusual continuous surface of propagation vectors q in reciprocal space (see Fig. 1b for the spiral surface of |J 2 /J 1 | = 0.85). At finite temperature, thermal fluctuations might select some specific q-vectors on the spiral surface 11 , resulting in an orderby-disorder transition 14,15 .Until now, several series of A-site spinels, in which the magnetic A ions form a diamond lattice, have been investigated, including: the cobaltates Co 3 O 4 and CoRh 2 O 4 16 ; the aluminates M Al 2 O 4 with M = Fe, Co, Mn 17-20 ; and the scandium thiospinels M Sc 2 S 4 with M = Fe, Mn 21 . For the spinels with Fe 2+ at the A-site, the e g orbital angular momentum of Fe 2+ is active, making the pure spin J 1 -J 2 model inadequate 22 . Among the other compounds, CoAl 2 O 4 and MnSc 2 S 4 manifest the strongest frustration. For CoAl 2 O 4 , the ratio of |J 2 /J 1 | has been identified as 0.109 19 , which is near, but still lower than, the 0.125 threshold for the spiral spin-liquid state. Many expe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.