The K/Cu-Zn catalyst has been synthesized by the co-precipitation method coupling with impregnation method and the catalytic performances for the reverse water gas shift (RWGS) reaction and mixed alcohols synthesis from CO2 hydrogenation have been investigated. The catalytic activity and product distribution depend strongly on reaction temperature, pressure, space velocity and the molar ratio of H2/CO2. These results indicated that the optimal conditions for CO2 hydrogenation over K/Cu-Zn catalyst were as follows: 350 K, 6.0 MPa, 5000 h-1 and H2/CO2 = 3.0, under which the selectivity of CO and mixed alcohols reach 84.27 wt% and 7.56 wt%, respectively. The outstanding performances for RWGS reaction and mixed alcohols synthesis of K/Cu-Zn catalyst can be due to the well dispersion of Cu active component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.