BackgroundBuckwheat flour and buckwheat sprouts possess antioxidant properties, and previous studies have reported on buckwheat flour displaying an inhibitory activity for angiotensin-I converting enzyme (ACE). Information is lacking on the bioactivity of other parts of the buckwheat, such as the seed hulls and plant stalks. This study investigates the ACE inhibitory activity and antioxidant activity of various parts of 2 types of buckwheat, namely, common buckwheat (Fagopyrum esculentum Moench) and tartary buckwheat (Fagopyrum tataricum Gaertn).ResultsThe extract of common hulls extracted using 50% (v/v)-ethanol solvent presented a remarkable inhibitory activity. The value of IC50 is 30 μg ml-1. The extracts of both common and tartary hulls extracted using 50% (v/v)-ethanol solvent demonstrated an antioxidant activity that is superior to that of other extracts.ConclusionThis study determined that the ethanolic extract of the hulls of common buckwheat presented more favorable antioxidant and ACE inhibitory abilities. However, the correlation of antioxidant activity and ACE inhibitory activity for all 18 types of extracts is low. The ACE inhibitory activity could have been caused by a synergistic effect of flavonoids or from other unidentified components in the extracts. The ethanolic extract of common hulls demonstrated remarkable ACE inhibitory activity and is worthy of further animal study.
This study investigates suitable electrochemical mediators and optimal mediator concentration for breast cancer cells, MDA-MB-231. The optimized mediators were 1 mM ferricyanide and 10 mM menadione. The specifications for the chronoamperometric detection of ferrocyanide were a linear range of 0.02-0.36 mM. The detection limit was 5.0 mM and the spiked recovery was 95 %-99 %. The oxidation currents increased linearly with cultured cell density. Cell viabilities determined using electrochemical methods confirmed those determined by MTT assay. The running time can be reduced to less than 30 min. The chronoamperometric method can be used as an alternative method for rapidly assessing the viability of breast cancer cells.
We investigated the use of amperometric and chronoamperometric methods with a double mediator system and screen-printed electrodes (SPEs) for the electrochemical sensing of hepatocyte viability. Cell counts were determined based on measuring cellular respiration via interaction of electroactive redox mediators. The oxidation currents of chronoamperometric measurement were proportional to the concentrations of ferrocyanide which was produced via interaction of cellular respiration, succinate and ferricyanide. The integrated oxidation charges increased linearly with the density of the cultured primary rat hepatocytes over a range of 1 × 10(5) to 5 × 10(5) cells per well (slope = 1.98 (±0.08) μC per 10(5) cells; R(2) = 0.9969), and the detection limit was 7600 (±300) cells per well based on S/N = 3. Each density of cells was cultured in triple replicates and individual cell samples were evaluated. The results of the cytotoxic effect of the chronoamperometric method are comparable to those of the tetrazolium-based colorimetric assay. The chronoamperometric method with ferricyanide and succinate mediators is an efficient, alternative method for assessing the viability of primary hepatocytes which can be completed in 20 min. Succinate did not provide an efficient electron shuttle between cytosolic respiratory redox activity of cancer cells and extracellular ferricyanide, an effect that may be useful for distinguishing hepatocarcinoma cells from healthy hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.