Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms 1-4 . HD is caused by the expansion of cytosineadenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene 5 . Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues 2,6 , but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological 7 , neurological and genetic similarities 8,9 between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases 10,11 . Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features Correspondence to: Anthony W. S. Chan.Author Information Reprints and permissions information is available at www.nature.com/reprints. Correspondence and requests for materials should be addressed to A.W.S.C. (achan@genetics.emory.edu).. * These authors contributed equally to this work. Author Contributions S.-H.Y. carried out assisted reproductive technique (ART) in monkeys, viral gene transfer, construct design and molecular analysis; P.-H.C., construct design and evaluation; K.P.-N., ART in monkeys; H.B., animal management; behavioural testing and all animal procedures; K.L., animal care and behavioural testing; E.C.H.C., molecular analysis; J.-J.Y., preparation of high titre lentiviruses; B.S., J.L. and Z.H.F., neuropathological analysis; J.O., surgical procedures and animal care; Y.S., neuropathological analysis; J.B., design of behavioural and cognitive testing; S.M.Z., experimental design and manuscript preparation; S.H.L. and X.J.-L., construct design, analysis and manuscript preparation; A.W.S.C., ART in monkey, viral gene transfer, experimental design, construct design, molecular analysis and manuscript preparation. We injected 130 mature rhesus oocytes with high titre lentiviruses expressing exon 1 of the human HTT gene with 84 CAG repeats (HTT-84Q; Fig. 1c) and lentiviruses expressing the green fluorescent protein (GFP) gene (Fig. 1c), under the control of the human polyubiquitin-C promoter, into the perivitelline space. After fertilization by intracytoplasmic sperm injecti...
Reporter gene-based magnetic resonance imaging (MRI) offers unique insights into behavior of cells after transplantation, which could significantly benefit stem cell research and translation. Several candidate MRI reporter genes, including one that encodes for iron storage protein ferritin, have been reported, and their potential applications in embryonic stem (ES) cell research have yet to be explored. We have established transgenic mouse ES (mES) cell lines carrying human ferritin heavy chain (FTH) as a reporter gene and succeeded in monitoring the cell grafts in vivo using T 2 -weighted MRI sequences. FTH generated MRI contrast through compensatory upregulation of transferrin receptor (Tfrc) that led to increased cellular iron stored in ferritin-bound form. At a level sufficient for MRI contrast, expression of FTH posed no toxicity to mES cells and did not interfere with stem cell pluripotency as observed in neural differentiation and teratoma formation. The compatibility and functionality of ferritin as a reporter in mES cells opens up the possibility of using MRI for longitudinal noninvasive monitoring of ES cell-derived cell grafts at both molecular and cellular levels.
Parkinson's disease (PD) is an age-dependent neurodegenerative disease that can be caused by genetic mutations in α-synuclein (α-syn) or duplication of wild-type α-syn; PD is characterized by the deposition of α-syn aggregates, indicating a gain of toxicity from accumulation of α-syn. Although the major neuropathologic feature of PD is the degeneration of dopaminergic (DA) neurons in the substantia nigra, non-motor symptoms including anxiety, cognitive defect and sleep disorder precede the onset of motor impairment, and many clinical symptoms of PD are not caused by degeneration of DA neurons. Non-human primate models of PD are important for revealing the early pathology in PD and identifying effective treatments. We established transgenic PD rhesus monkeys that express mutant α-syn (A53T). Six transgenic A53T monkeys were produced via lentiviral vector expressing A53T in fertilized monkey eggs and subsequent embryo transfer to surrogates. Transgenic A53T is expressed in the monkey brain and causes age-dependent non-motor symptoms, including cognitive defects and anxiety phenotype, without detectable sleeping disorders. The transgenic α-syn monkeys demonstrate the specific early symptoms caused by mutant α-syn and provide insight into treatment of early PD.
MicroRNAs (miRNAs) play important roles in several neurobiological processes, including the development and progression of diseases. Previously, we identified that one specific miRNA, miR-196a, provides neuroprotective effects on Huntington's disease (HD), although the detailed mechanism is still unclear. Based on our bioinformatic analyses, we hypothesize miR-196a might offer neuroprotective functions through improving cytoskeletons of brain cells. Here, we show that miR-196a could enhance neuronal morphology, further ameliorating intracellular transport, synaptic plasticity, neuronal activity, and learning and memory abilities. Additionally, we found that miR-196a could suppress the expression of RAN binding protein 10 (RANBP10) through binding to its 3' untranslated region, and higher expression of RANBP10 exacerbates neuronal morphology and intracellular transport. Furthermore, miR-196a enhances neuronal morphology through suppressing RANBP10 and increasing the ability of β-tubulin polymerization. Most importantly, we observed higher expression of RANBP10 in the brains of HD transgenic mice, and higher expression of RANBP10 might exacerbate the pathological aggregates in HD. Taken together, we provide evidence that enhancement of neuronal morphology through RANBP10 is one of the neuroprotective mechanisms for miR-196a. Since miR-196a has also been reported in other neuronal diseases, this study might offer insights with regard to the therapeutic use of miR-196a in other neuronal diseases.
This work was supported by the National Science Council of Taiwan (NSC101-2320-B-006-030-MY3). The author declares that there are no conflicts of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.