A novel, cellulolytic, bacterial thermophilic strain, T4, was isolated from sugar refinery wastewater in southern Taiwan. This isolate, a Gram-negative, motile, aerobically growing sporulating rod, can secrete thermostable endocellulase (endo-1,4-beta-D-glucanase, EC 3.2.1.4) and hydrolyze carboxymethylcellulose (CMC), phosphoric acid-swollen cellulose, Avicel, filter paper, and salicin. When strain T4 was grown in CMC medium, the cellulolytic enzyme activity in culture supernatants was stable up to 70 degrees C. More than 10% of the original activity was still detectable after heating to 100 degrees C with a pH 7.0 for 1 h. Based on 16S rDNA sequence analysis, DNA base composition, phenotypic and physiological characteristics, as well as DNA-DNA hybridization, strain T4 was classified as Geobacillus thermoleovorans T4 (DSM 14791 = CCRC 17200). We also demonstrated that the type species G. stearothermophilus (DSM 22 = ATCC 12980) could hydrolyze amorphous and crystalline (filter paper) celluloses at a rate of 13 and 14%, respectively, in comparison with strain T4.
BackgroundBy coupling the oxidation of organic substrates to a broad range of terminal electron acceptors (such as nitrate, metals and radionuclides), Shewanella oneidensis MR-1 has the ability to produce current in microbial fuel cells (MFCs). omcA, mtrA, omcB (also known as mtrC), mtrB, and gspF are some known genes of S. oneidensis MR-1 that participate in the process of electron transfer. How does the cell coordinate the expression of these genes? To shed light on this problem, we obtain the gene expression datasets of MR-1 that are recently public-accessible in Gene Expression Omnibus. We utilize the novel statistical method, liquid association (LA), to investigate the complex pattern of gene regulation.ResultsThrough a web of information obtained by our data analysis, a network of transcriptional regulatory relationship between chemotaxis and electron transfer pathways is revealed, highlighting the important roles of the chemotaxis gene cheA-1, the magnesium transporter gene mgtE-1, and a triheme c-type cytochrome gene SO4572.ConclusionWe found previously unknown relationship between chemotaxis and electron transfer using LA system. The study has the potential of helping researchers to overcome the intrinsic metabolic limitation of the microorganisms for improving power density output of an MFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.