A phosphor-converted light-emitting diode structure with an increased phosphor extraction efficiency owing to the ring remote phosphor structure achieves a maximum luminous efficacy of 145 lm/W at 20 mA and a maximum luminous flux of 132 lm at 400 mA. The ring remote phosphor structure consists of an inverted cone lens encapsulant and a surrounding ring remote phosphor layer. Ray-tracing simulations demonstrate that the phosphor extraction efficiency of the ring remote phosphor structure exceeds 93%. A high phosphor extraction efficiency is achieved by decreasing the re-emitting light from the ring remote phosphor layer to the absorptive light-emitting diode (LED) chip. Our results further demonstrate that the ring remote phosphor structure device has a radiation pattern as a bi-wing, which is more appropriate for solid-state lighting owing to the low glare.
This study of the optoelectronic properties of blue light-emitting diodes under direct current stress. It is found that the electroluminescence intensity increases with duration of stress, and the efficiency droop curves illustrated that the peak-efficiency and the peak-efficiency-current increases and decreases, respectively. We hypothesize that these behaviors mainly result from the increased internal quantum efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.