The transverse vibrations of a flexible connecting rod in an otherwise rigid slider-crank mechanism are considered. An analytical approach using the method of multiple scales is adopted and particular emphasis is placed on nonlinear effects which arise from finite deformations. Several nonlinear resonances and instabilities are investigated, and the influences of important system parameters on these resonances are examined in detail.
We consider the non-linear normal modes for finite amplitude vibrations of a cantilever beam by using an extension of the invariant manifold techniques recently developed by the authors. Detailed results from two examples are presented. The first considers non-linearities which arise from finite deformations, including inertial non-linearities. In this case it is shown that if one simply accounts for the kinematic effects of foreshortening, the linear modes of the cantilever beam work remarkably well for describing the actual non-linear mode shapes of the beam up to quite large amplitudes. A second example demonstrates the manner in which the method handles non-linearities in the boundary conditions, in this case, a non-linear spring attached at the free end of the beam.
In this paper we present results on chaotic motions in a periodically forced impacting system which is analogous to the version of Duffing’s equation with negative linear stiffness. Our focus is on the prediction and manipulation of the cross-well chaos in this system. First, we develop a general method for determining parameter conditions under which homoclinic tangles exist, which is a necessary condition for cross-well chaos to occur. We then show how one may manipulate higher harmonics of the excitation in order to affect the range of excitation amplitudes over which fractal basin boundaries between the two potential wells exist. We also experimentally investigate the threshold for cross-well chaos and compare the results with the theoretical results. Second, we consider the rate at which the system crosses from one potential well to the other during a chaotic motion and relate this to the rate of phase space flux in a Poincare map defined in terms of impact parameters. Results from simulations and experiments are compared with a simple theory based on phase space transport ideas, and a predictive scheme for estimating the rate of crossings under different parameter conditions is presented. The main conclusions of the paper are the following: (1) higher harmonics can be used with some effectiveness to extend the region of deterministic basin boundaries (in terms of the amplitude of excitation) but their effect on steady-state chaos is unreliable; (2) the rate at which the system executes cross-well excursions is related in a direct manner to the rate of phase space flux of the system as measured by the area of a turnstile lobe in the Poincare map. These results indicate some of the ways in which the chaotic properties of this system, and possibly others such as Duffing’s equation, are influenced by various system and input parameters. The main tools of analysis are a special version of Melnikov’s method, adapted for this piecewise-linear system, and ideas of phase space transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.