Heart sounds play an important role in the diagnosis of cardiac conditions. Due to the low signal-to-noise ratio (SNR), it is problematic and time-consuming for experts to discriminate different kinds of heart sounds. Thus, objective classification of heart sounds is essential. In this study, we combined a conventional feature engineering method with deep learning algorithms to automatically classify normal and abnormal heart sounds. First, 497 features were extracted from eight domains. Then, we fed these features into the designed convolutional neural network (CNN), in which the fully connected layers that are usually used before the classification layer were replaced with a global average pooling layer to obtain global information about the feature maps and avoid overfitting. Considering the class imbalance, the class weights were set in the loss function during the training process to improve the classification algorithm’s performance. Stratified five-fold cross-validation was used to evaluate the performance of the proposed method. The mean accuracy, sensitivity, specificity and Matthews correlation coefficient observed on the PhysioNet/CinC Challenge 2016 dataset were 86.8%, 87%, 86.6% and 72.1% respectively. The proposed algorithm’s performance achieves an appropriate trade-off between sensitivity and specificity.
Zebrafish eggs are widely used in biological experiments to study the environmental and genetic influence on embryo development. Due to the high throughput of microscopic imaging, automated analysis of zebrafish egg microscopic images is highly demanded. However, machine learning algorithms for zebrafish egg image analysis suffer from the problems of small imbalanced training dataset and subtle inter-class differences. In this study, we developed an automated zebrafish egg microscopic image analysis algorithm based on deep convolutional neural network (CNN). To tackle the problem of insufficient training data, the strategies of transfer learning and data augmentation were used. We also adopted the global averaged pooling technique to overcome the subtle phenotype differences between the fertilized and unfertilized eggs. Experimental results of a five-fold cross-validation test showed that the proposed method yielded a mean classification accuracy of 95.0% and a maximum accuracy of 98.8%. The network also demonstrated higher classification accuracy and better convergence performance than conventional CNN methods. This study extends the deep learning technique to zebrafish egg phenotype classification and paves the way for automatic bright-field microscopic image analysis.
Automatic processing large amount of microscopic images is important for medical and biological studies. Deep learning has demonstrated better performance than traditional machine learning methods for processing massive quantities of images; therefore, it has attracted increasing attention from the research and industry fields. This paper summarizes the latest progress of deep learning methods in biological microscopic image processing, including image classification, object detection, and image segmentation. Compared to the traditional machine learning methods, deep neural networks achieved better accuracy without tedious feature selection procedure. Obstacles of the biological image analysis with deep learning methods include limited training set and imperfect image quality. Viable solutions to these obstacles are discussed at the end of the paper. With this survey, we hope to provide a reference for the researchers conducting biological microscopic image processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.