Alzheimer's disease (AD) is the most common form of dementia caused by the formation of Aβ aggregates. So far, no effective medicine for the treatment of AD is available. Many efforts have been made to find effective medicine to cope with AD. Curcumin is a drug candidate for AD, being a potent anti-amyloidogenic compound, but the results of clinical trials for it were either negative or inclusive. In the present study, we took advantages from accumulated knowledge about curcumin and have screened out four compounds that have chemical and structural similarity with curcumin more than 80% from all FDA-approved oral drugs. Using all-atom molecular dynamics simulation and the free energy perturbation method we showed that among predicted compounds anti-arrhythmic medication propafenone shows the best anti-amyloidogenic activity. The in vitro experiment further revealed that it can inhibit Aβ aggregation and protect cells against Aβ induced cytotoxicity to almost the same extent as curcumin. Our results suggest that propafenone may be a potent drug for the treatment of Alzheimer's disease.
PARK2, an ubiquitin ligase closely correlated with Parkinson's disease and cancer, has been shown to accumulate at centrosomes to ubiquitinate misfolded proteins accumulated during interphase. In the present study, we demonstrated that PARK2 can also localize to centrosomes in mitosis and that the protein does not fluctuate through the S- to M-phase. A C-terminal truncation of PARK2 resulted in a spindle assembly checkpoint defect, characterized by HeLa cells able to bypass mitotic arrest induced by nocodazole and form multinucleated cells when overexpressing the C-terminal truncated PARK2 protein. The spindle assembly checkpoint defect may be due to a change in a biochemical or structural property of PARK2 caused by the C-terminal truncation, resulting in a loss of self-interaction between PARK2 proteins.
Gramicidin A (gA) forms several convertible conformations in different environments. In this study, we investigated the effect of calcium halides on the molecular state and antimicrobial activity of gramicidin A. The molecular state of gramicidin A is highly affected by the concentration of calcium salt and the type of halide anion. Gramicidin A can exist in two states that can be characterized by circular dichroism (CD), mass, nuclear magnetic resonance (NMR) and fluorescence spectroscopy. In State 1, the main molecular state of gramicidin A is as a dimer, and the addition of calcium salt can convert a mixture of four species into a single species, which is possibly a left-handed parallel double helix. In State 2, the addition of calcium halides drives gramicidin A dissociation and denaturation from a structured dimer into a rapid equilibrium of structured/unstructured monomer. We found that the abilities of dissociation and denaturation were highly dependent on the type of halide anion. The dissociation ability of calcium halides may play a vital role in the antimicrobial activity, as the structured monomeric form had the highest antimicrobial activity. Herein, our study demonstrated that the molecular state was correlated with the antimicrobial activity.
Gramicidin A (gA) is a linear antimicrobial peptide that can form a channel and specifically conduct monovalent cations such as H+ across the lipid membrane. The antimicrobial activity of gA is associated with the formation of hydroxyl free radicals and the imbalance of NADH metabolism, possibly a consequence caused by the conductance of cations. The ion conductivity of gramicidin A can be blocked by Ca2+ ions. However, the effect of Ca2+ ions on the antimicrobial activity of gA is unclear. To unveil the role of Ca2+ ions, we examined the effect of Ca2+ ions on the antimicrobial activity of gramicidin A against Staphylococcus aureus (S. aureus). Results showed that the antimicrobial mechanism of gA and antimicrobial activity by Ca2+ ions are concentration-dependent. At the low gA concentration (≤1 μM), the antimicrobial mechanism of gA is mainly associated with the hydroxyl free radical formation and NADH metabolic imbalance. Under this mode, Ca2+ ions can significantly inhibit the hydroxyl free radical formation and NADH metabolic imbalance. On the other hand, at high gA concentration (≥5 μM), gramicidin A acts more likely as a detergent. Gramicidin A not only causes an increase in hydroxyl free radical levels and NAD+/NADH ratios but also induces the destruction of the lipid membrane composition. At this condition, Ca2+ ions can no longer reduce the gA antimicrobial activity but rather enhance the bacterial killing ability of gramicidin A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.