Although the use of sorafenib appears to increase the survival rate of renal cell carcinoma (RCC) patients, there is also a proportion of patients who exhibit a poor primary response to sorafenib treatment. Therefore, it is critical to elucidate the mechanisms underlying sorafenib resistance and find representative biomarkers for sorafenib treatment in RCC patients. Herein, we identified that a long noncoding RNA GAS5 was downregulated in sorafenib nonresponsive RCCs. GAS5 overexpression conferred sorafenib sensitive to nonresponsive RCC cells, whereas knockdown of GAS5 promoted responsive RCC cells resistant to sorafenib treatment in vitro and in vivo. Mechanistically, GAS5 functioned as competing endogenous RNA to repress miR-21, which controlled its down-stream target SOX5. We proposed that GAS5 was responsible for sorafenib resistance in RCC cells and GAS5 exerted its function through the miR-21/ SOX5 axis. Our findings suggested that GAS5 downregulation may be a new marker of poor response to sorafenib and GAS5 could be a potential therapeutic target for sorafenib treatment in RCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.