With the advantages of high energy density, long cycle life and high stability, lithium-ion batteries have been used in a large number of fields such as electric vehicles and grid scale energy storage. To ensure the safe and reliable operation of battery systems, it is important to make an accurate and rapid estimation of the state of health (SOH) of Li-ion cells. A Li-ion cell is a complex nonlinear dynamic system. The SOH of a Li-ion can not be measured directly in actual working conditions; it can only be estimated indirectly by external characteristic parameters that reflects the extent of cell aging. It is difficult to ensure the reliability of method based on a single aging feature or model. Therefore, this paper proposes a multi-feature SOH estimation method that combines data-driven XGBoost and a Kalman filter. Firstly, a principal component analysis algorithm to reconstruct multiple battery aging features based on data is used, and an XGBoost online estimation model incorporating multiple features based on the reconstructed feature data is constructed. Finally, the joint optimal estimation of SOH of Li-ion cells by introducing a time-domain Kalman filter based on the real-time correction of the XGBoost model is achieved in this method. The results show that the method improves the accuracy and robustness of the estimation model and achieves a high-precision joint estimation of SOH for Li-ion cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.