The aim of this paper is to quantitatively characterize the appearance, stability, density, and shape of surface nanobubbles on hydrophobic surfaces under varying conditions such as temperature and temperature variation, gas type and concentration, surfactants, and surface treatment. The method we adopt is atomic force microscopy (AFM) operated in the tapping mode. In particular, we show (i) that nanobubbles can slide along grooves under the influence of the AFM tip, (ii) that nanobubbles can spontaneously form by substrate heating, allowing for a comparison of the surface topology with and without the nanobubble, (iii) that a water temperature increase leads to a drastic increase in the nanobubble density, (iv) that pressurizing the water with CO2 also leads to a larger nanobubble density, but typically to smaller nanobubbles, (v) that alcohol-cleaning of the surface is crucial for the formation of surface nanobubbles, (vi) that adding 2-butanol as surfactant leads to considerably smaller surface nanobubbles, and (vii) that flushing water over alcohol-covered surfaces strongly enhances the formation of surface nanobubbles.
Electrolysis of water is employed to produce surface nanobubbles on highly orientated pyrolytic graphite (HOPG) surfaces. Hydrogen (oxygen) nanobubbles are formed when the HOPG surface acts as a negative (positive) electrode. The coverage and volume of the nanobubbles increase with increasing voltage. The yield of hydrogen nanobubbles is much larger than the yield of oxygen nanobubbles. The growth of the individual nanobubbles during the electrolysis process is recorded in time with the help of AFM measurements and correlated with the total current. Both the size of the individual nanobubbles and the total current saturate typically after 1 min; then the nanobubbles are in a dynamic equilibrium, meaning that they do not further grow, in spite of ongoing gas production and nonzero current. The surface area of nanobubbles shows a good correlation with the nanobubble volume growth rate, suggesting that either the electrolytic gas emerges directly at the nanobubbles' surface or it emerges at the electrode's surface and then diffuses through the nanobubbles' surface. Moreover, the experiments reveal that the time constants of the current and the aspect ratio of nanobubbles are the same under all conditions. Replacement of pure water by water containing a small amount of sodium chloride (0.01 M) allows for larger currents, but qualitatively gives the same results.
We show that the distribution of nanobubbles is inhomogeneous on the (under-water) surface of highly orientated pyrolytic graphite (HOPG), reflecting the atomic steps: The formation of nanobubbles is strongly enhanced at the upper side of the atomic steps, i.e., the most hydrophobic area on the surface. In contrast, no nanobubbles are formed at the lower side of the steps, i.e., the most hydrophilic area. The width of this nanobubble-free zone is approximately 20 nm. We thus establish a correlation between surface topography and nanobubble formation. In addition, we show that the profile of nanobubbles is sensitive to the applied AFM tip-force, demonstrating the deformability of nanobubbles.
It is the aim of this paper to quantitatively characterize the capability of surface nanobubbles for surface cleaning, i.e., removal of nanodimensioned polystyrene particles from the surface. We adopt two types of substrates: plain and nanopatterned (trench/ridge) silicon wafer. The method used to generate nanobubbles on the surfaces is the so-called alcohol-water exchange process (use water to flush a surface that is already covered by alcohol). It is revealed that nanobubbles are generated on both surfaces, and have a remarkably high coverage on the nanopatterns. In particular, we show that nanoparticles are-in the event of nanobubble occurrence-removed efficiently from both surfaces. The result is compared with other bubble-free wet cleaning techniques, i.e., water rinsing, alcohol rinsing, and water-alcohol exchange process (use alcohol to flush a water-covered surface, generating no nanobubbles) which all cause no or very limited removal of nanoparticles. Scanning electron microscopy (SEM) and helium ion microscopy (HIM) are employed for surface inspection. Nanobubble formation and the following nanoparticle removal are monitored with atomic force microscopy (AFM) operated in liquid, allowing for visualization of the two events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.