Mechanical stress and genetic factors play important roles in the occurrence of thoracic ossification of ligament flavum (TOLF), which can occur at one, two, or multiple levels of the spine. It is unclear whether single- and multiple-level TOLF differ in terms of osteogenic differentiation potency and osteogenesis-related gene expression under cyclic mechanical stress. This was addressed in the present study using patients with non-TOLF and single- and multiple-level TOLF (n=8 per group). Primary ligament cells were cultured and osteogenesis was induced by application of cyclic mechanical stress. Osteogenic differentiation was assessed by evaluating alkaline phosphatase (ALP) activity and the mRNA and protein expression of osteogenesis-related genes, including ALP, bone morphogenetic protein 2 (BMP2), Runt-related transcription factor-2 (Runx-2), osterix, osteopontin (OPN) and osteocalcin. The application of cyclic mechanical stress resulted in higher ALP activity in the multiple-level than in the single-level TOLF group, whereas no changes were observed in the non-TOLF group. The ALP, BMP2, OPN and osterix mRNA levels were higher in the multiple-level as compared to the single-level TOLF group, and the levels of all osteogenesis-related genes, apart from Runx2, were higher in the multiple-level as compared to the non-TOLF group. The osterix and ALP protein levels were higher in the multiple-level TOLF group than in the other 2 groups, and were increased with the longer duration of stress. These results highlight the differences in osteogenic differentiation potency between single- and multiple-level TOLF that may be related to the different pathogenesis and genetic background.
This study investigated the pathological process of Notch signaling in the osteogenesis of ligamentum flavum tissues and cells, and the associated regulatory mechanisms. Notch receptors, ligands, and target genes were identified by quantitative polymerase chain reaction (qPCR) in ligamentum flavum cells and immunohistochemistry in ligamentum flavum sections from ossification of the ligamentum flavum (OLF) patients and controls. The temporospatial expression patterns of JAG1/Notch2/HES1 in human ligamentum flavum cells during osteogenic differentiation were determined by qPCR. Lentiviral vectors for Notch2 overexpression and knockdown were constructed and transfected into ligamentum flavum cells before osteogenic differentiation to examine the function of Notch signaling pathways in the osteogenic differentiation of ligamentum flavum cells. Alkaline phosphatase, Runx2, Osterix, osteocalcin, and osteopontin mRNA levels, alkaline phosphatase activity, and Alizarin Red staining were used as indicators of osteogenic differentiation. JAG1/Notch2/ HES1 mRNA levels were up-regulated in ligamentum flavum cells from OLF patients, which increased during osteogenic differentiation. Immunohistochemical analysis suggested positive Notch2 expression at the ossification front. Down-regulation of Notch2 expression decelerated osteogenic differentiation of ligamentum flavum cells, and Notch2 overexpression promoted osteogenic differentiation of ligamentum flavum cells. Expression of Runx2 and Osterix increased in a manner similar to that of Notch2 during osteogenic differentiation of ligamentum flavum cells, and Notch2 knockdown and overexpression influenced their expression levels. Notch signaling plays an important role in OLF, and Notch may affect the osteogenic differentiation of ligamentum flavum cells via interactions with Runx2 and Osterix.ß
Understanding and controlling the orbital alignment of molecules placed between electrodes is essential in the design of practically-applicable molecular and nanoscale electronic devices. The orbital alignment is highly determined by...
Molecular wires with asymmetric anchors have garnered considerable interest in the field of molecular electronics. Numerous studies have focused on asymmetrically anchored molecules, both at the single molecule and self-assembled...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.