Countries around the world have paid increasing attention to the issue of marine security, and sea target detection is a key task to ensure marine safety. Therefore, it is of great significance to propose an efficient and accurate sea-surface target detection algorithm. The anchor-setting method of the traditional YOLO v3 only uses the degree of overlap between the anchor and the ground-truth box as the standard. As a result, the information of some feature maps cannot be used, and the required accuracy of target detection is hard to achieve in a complex sea environment. Therefore, two new anchor-setting methods for the visual detection of sea targets were proposed in this paper: the average method and the select-all method. In addition, cross PANet, a feature fusion structure for cross-feature maps was developed and was used to obtain a better baseline cross YOLO v3, where different anchor-setting methods were combined with a focal loss for experimental comparison in the datasets of sea buoys and existing sea ships, SeaBuoys and SeaShips, respectively. The results showed that the method proposed in this paper could significantly improve the accuracy of YOLO v3 in detecting sea-surface targets, and the highest value of mAP in the two datasets is 98.37% and 90.58%, respectively.
Dynamic position (DP) control and pipeline dynamics are the two main parts of the deepwater S-lay simulation model. In this study, a fully coupled analysis tool for deepwater S-lay deployment by dynamically positioned vessels is developed. The method integrates the major aspects related to numerical simulation, including coupled pipeline motion and roller contact forces. The roller–pipe interaction is incorporated in the S-lay pipeline model using a contact search method based on a lumped-mass (LM) formulation in global coordinates. A proportional-integration-differentiation (PID) controller and a Kalman filter are applied in the vessel motion equation to calculate the thrust allocation of the DP system in time domain. Numerical simulation results showed that the dynamic effects add a significant contribution to the tension, but have little influence on the maximum pipe stress and strain. The dynamic response of the coupled S-lay and DP pipeline deployment system increases the demand on the tensioner load carrying capability as well as the maximum DP thruster power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.