While melatonin is known to have protective effects in mitochondria-related diseases, aging, and neurodegenerative disorders, there is poor understanding of the effects of melatonin treatment on mitophagy in Alzheimer's disease (AD).We used proteomic analysis to investigate the effects and underlying molecular mechanisms of oral melatonin treatment on mitophagy in the hippocampus of 4-month-old wild-type mice versus age-matched 5 × FAD mice, an animal model of AD. 5 × FAD mice showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mtDNA, mitochondrial marker proteins and MDA production, decreased electron transport chain proteins and ATP levels, and colocalization of Lamp1 and Tomm20. Melatonin treatment reversed the abnormal expression of proteins in the signaling pathway of lysosomes, pathologic phagocytosis of microglia, and mitochondrial energy metabolism. Moreover, melatonin restored mitophagy by improving mitophagosome-lysosome fusion via Mcoln1,
Purpose -The purpose of this paper is to investigate different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation and to find out the optimal selection of sloshing mitigation for practical applications. Design/methodology/approach -The numerical study is conducted by using a proven improved smoothed particle hydrodynamics (SPH), which is convenient in tracking free surfaces and capable of obtaining smooth and correct pressure field. Findings -Liquid sloshing effects in a rectangular tank with vertical middle baffles, horizontal baffles, T-shape baffles and porous baffles are investigated together with those without any baffles. It is found that the existence of baffles can mitigate sloshing effects and the mitigation performance depends on the shape, structure and location of the baffles. Considering the balance of sloshing mitigation performance and the complexity in structure and design, the I shaped and T shaped baffles can be good choices to mitigate sloshing effects. Practical implications -The presented methodology and findings can be helpful in practical engineering applications, especially in ocean engineering and problems with large sloshing effects. Originality/value -The SPH method is a meshfree, Lagrangian particle method, and therefore it is an attractive approach for modeling liquid sloshing with material interfaces, free surfaces and moving boundaries. In most previous literature, only simple baffles are investigated. In this paper, more complicated baffles are investigated, which can be helpful in practical applications and engineering designs.
Abstract.The scaled boundary finite element method (SBFEM) was extended to solve dam-reservoir interaction problems in the time domain, where dams were flexible and the fluid in reservoir was semi-infinite and compressible. Transient responses of dam-reservoir systems subjected to horizontal ground motions were analyzed based on the SBFEM and finite element method (FEM) coupling method. A dam was modeled by FEM, while the whole fluid in reservoir was modeled by the SBFEM alone or a combination of FEM and SBFEM. Two benchmark examples were considered to check the accuracy of the SBFEM-FEM coupling method. For a vertical dam-reservoir system, the semi-infinite fluid with a uniform cross section was modeled by the SBFEM alone. For non-vertical dam-reservoir systems, the fluid was divided into a nearfield FEM domain and a far-field SBFEM domain. The geometry of near field is arbitrary, and the far field is a semi-infinite prism. Their numerical results obtained through the presented method were compared with those from analytical or substructure methods and good agreements were found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.