Cisplatin is the major chemotherapeutic drug in gastric cancer, particularly in treating advanced gastric cancer. Tumour cells often develop resistance to chemotherapeutic drugs, which seriously affects the efficacy of chemotherapy. GPR30 is a novel oestrogen receptor that is involved in the invasion, metastasis and drug resistance of many tumours. Targeting GPR30 has been shown to increase the drug sensitivity of breast cancer cells. However, few studies have investigated the role of GPR30 in gastric cancer. Epithelial‐mesenchymal transition (EMT) has been shown to be associated with the development of chemotherapeutic drug resistance. In this study, we demonstrated that GPR30 is involved in cisplatin resistance by promoting EMT in gastric cancer. GPR30 knockdown resulted in increased sensitivity of different gastric cancer (GC) cells to cisplatin and alterations in the epithelial/mesenchymal markers. Furthermore, G15 significantly enhanced the cisplatin sensitivity of GC cells while G1 inhibited this phenomenon. In addition, EMT occurred when AGS and BGC‐823 were treated with cisplatin. Down‐regulation of GPR30 with G15 inhibited this transformation, while G1 promoted it. Taken together, these results revealed the role of GPR30 in the formation of cisplatin resistance, suggesting that targeting GPR30 signalling may be a potential strategy for improving the efficacy of chemotherapy in gastric cancer.
Background and aim: Paclitaxel (PTX) plus 5-fluorouracil (5-Fu) has become the standard chemotherapy for advanced gastric cancer (GC). Apatinib, a small-molecule tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, improves outcomes in GC patients as a third-line treatment. However, its impact on the chemosensitivity of GC remains to be determined. Hence, we aimed to assess the efficacy and safety of apatinib combined with chemotherapy in vivo and in vitro. Methods: The MGC803 cell viability was determined by Cell Counting Kit-8 assay, and the interactions between apatinib and conventional cytotoxic agents revealed by combination index values were calculated using Calcusyn 2.0 software. We also used a zebrafish embryo xenograft model to validate the synergistic interactions. Furthermore, 4 patients with late-stage GC were enrolled to explore the efficacy and safety of PTX/Tegafur Gimeracil Oteracil Potassium (S1) (PS) chemotherapy plus apatinib in conversion surgery. Results: Apatinib showed synergistic interactions with both PTX and 5-Fu in vivo. The zebrafish embryo xenograft model also demonstrated that apatinib significantly enhanced the antitumor activity of PTX and 5-Fu. Apatinib plus PS chemotherapy was well tolerated before surgery. Objective response to preoperative SPA treatment was achieved in all 4 patients. No postoperative bleeding events or wound-healing complications were observed. No postperative morbidity occurred and no morbidity was encountered. Pathological examination showed that all patients had grade Ib pathological response. Conclusion: The experimental data suggested that apatinib improves the efficacy of PTX and 5-Fu both in vitro and in vivo. Clinical evidence showed that a combination of PS chemotherapy with apatinib may be an efficient and acceptable safety treatment for late-stage GC, especially in conversion surgery.
Gastric cancer (GC) is a common malignancy with low 5-year overall survival (OS).Recently, immune therapy has been used to treat cancer. B7H5 and CD28H are novel immune checkpoint molecules. However, the prognostic value of B7H5/CD28H expression in patients with GC remains unclear. In this study, seventy-one patients diagnosed with GC were included in this study. Patients' GC tissues and matched adjacent tissue constructed a tissue microarray. The expression levels of B7H5 and CD28H were examined using immunohistochemistry. Correlations between the expression of B7H5 and CD28H and the clinical data were evaluated. We found that the expression of B7H5 and CD28H (both P = .001) were higher in GC tumour tissues than in adjacent noncancerous tissues. B7H5/CD28H expression acted as an independent predictive factor in the OS of patients with GC. High expression of B7H5 and CD28H predicted poor outcome.Patients in the B7H5+CD28H+ group had a lower 5-year OS compared with patients in the B7H5−CD28− group (4.5% vs 55.6%, P = .001). A significant difference was found in the 5-year OS between patients in the B7H5+CD28H− and B7H5+CD28H+ groups (33.5% vs 4.5%, P = .006). However, there was no correlation between B7H5 and CD28H expression (P = .844). Therefore, B7H5 and CD28H expression are up-regulated in GC and are independent prognostic factors for overall survival in patients with GC. Although there was no correlation between B7H5 and CD28H expression, high expression of B7H5 and CD28H predicts poor prognosis, especially when both are highly expressed. K E Y W O R D SB7 family checkpoints, B7H5, CD28H, gastric cancer, immunotherapy
To study the effect of lncRNA HAND2-AS1 on gastric adenocarcinoma (GA) cell property and explore its specific mechanism. Methods: Data on stomach adenocarcinoma (STAD) were analyzed to screen differentially expressed lncRNA HAND2-AS1. RNA22-HAS database and dual luciferase reporter assay were applied to confirm the target relationship between HAND2-AS1/HIF3A and miR-184. The HAND2-AS1 and miR-184 expressions in tissue or cells were determined by qRT-PCR and Western blot. Besides, after GA cells (AGS) cultured in normoxic and hypoxic condition, phosphoenolpyruvate (PEP) and lactic acid were quantified by Phosphoenolpyruvate Fluorometric Assay Kit and Lactic Acid Detection kit, respectively. Additionally, colony formation assay, transwell invasion and migration assays were used to evaluate the abilities of cell invasion, migration, and proliferation in distinct conditions. Results: The HAND2-AS1 and HIF3A expressions were down-regulated and miR-184 expression was up-regulated in GA tissues and cells. Dual luciferase reporter assay confirmed HAND2-AS1 and HIF3A were targeted by miR-184. AGS cell proliferation abilities were restrained by HAND2-AS1 and HIF3A overexpression and enhanced by miR-184, as well as migration and invasion abilities. In addition, HAND2-AS1 rescued enhanced AGS cell proliferation, cell migration, cell invasion abilities and glycolytic process caused by hypoxia via miR-184/HIF3A. Conclusion: LncRNA HAND2-AS1 could inhibit GA cell proliferation, migration and invasion abilities and glycolytic process induced by hypoxia through miR-184/HIF3A signaling.
Background: The optimal lymphadenectomy for gastric cancer (GC) with pyloric invasion is controversial because the pattern of lymph node metastasis is different from that of distal GC. The rate of lymph node metastasis into the posterior area of the pancreatic head and hepatoduodenal ligament is high. This study evaluated the estimated benefit of radical gastrectomy with D2-plus lymphadenectomy in patients with pyloric invasion. Methods: All patients with GC invading the pylorus who underwent curative surgical resection with D2-plus lymphadenectomy between February 2013 and September 2015 were enrolled in the study. The index of estimated benefit from lymph node dissection (IEBLD) was calculated by multiplying the incidence of metastasis to each lymph node station by the 3-year overall survival (OS) rate of patients with metastasis to that station. Results: In total, 128 patients were eligible. The rate of lymph node metastasis and the 3-year OS rate (and IEBLD) of the patients with metastasis to lymph nodes were 14.3 and 44.4% (5.56) for No. 8p, 10.9 and 35.7% (3.89) for No. 12b, 9.5 and 33.3% (3.13) for No. 12p, 18.8 and 54.2% (10.19) for No. 13, and 21.8 and 53.6% (11.68) for No. 14v, respectively. Conclusions: In radical gastrectomy for GC with pyloric invasion, some survival benefit was observed with dissection of the No. 13 and No. 14 lymph nodes, but there was no survival benefit with dissection of the No. 8p lymph nodes. The No. 12b and No. 12p lymph nodes may be better to dissect in cT3 GC patients with pyloric invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.