This paper initializes the study of range subgraph counting and range subgraph listing, both of which are motivated by the significant demands in practice to perform graph analytics on subgraphs pertinent to only selected, as opposed to all, vertices. In the first problem, there is an undirected graph G where each vertex carries a real-valued attribute. Given an interval q and a pattern Q, a query counts the number of occurrences of Q in the subgraph of G induced by the vertices whose attributes fall in q. The second problem has the same setup except that a query needs to enumerate (rather than count) those occurrences with a small delay. In both problems, our goal is to understand the tradeoff between space usage and query cost, or more specifically: (i) given a target on query efficiency, how much pre-computed information about G must we store? (ii) Or conversely, given a budget on space usage, what is the best query time we can hope for? We establish a suite of upper-and lower-bound results on such tradeoffs for various query patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.