Protein ubiquitination plays an essential role in the regulation of retinoic acid-inducible gene I (RIG-I) activation and the antiviral immune response. However, the function of the opposite process of deubiquitination in RIG-I activation remains elusive. In this study, we have identified the deubiquitinating enzyme ubiquitin-specific protease 4 (USP4) as a new regulator for RIG-I activation through deubiquitination and stabilization of RIG-I. USP4 expression was attenuated after virus-induced RIG-I activation. Overexpression of USP4 significantly enhanced RIG-I protein expression and RIG-I-triggered beta interferon (IFN-) signaling and, at the same time, inhibited vesicular stomatitis virus (VSV) replication. Small interfering RNA (siRNA) knockdown of USP4 expression had an opposite effect. Furthermore, USP4 was found to interact with RIG-I and remove K48-linked polyubiquitination chains from RIG-I. Therefore, we identified USP4 as a new positive regulator for RIG-I that acts through deubiquitinating K48-linked ubiquitin chains and stabilizing RIG-I.
Current understanding holds that Klinefelter syndrome (KS) is not inherited, but arises randomly during meiosis. Whether there is any genetic basis for the origin of KS is unknown. Here, guided by our identification of some USP26 variations apparently associated with KS, we found that knockout of Usp26 in male mice resulted in the production of 41, XXY offspring. USP26 protein is localized at the XY body, and the disruption of Usp26 causes incomplete sex chromosome pairing by destabilizing TEX11. The unpaired sex chromosomes then result in XY aneuploid spermatozoa. Consistent with our mouse results, a clinical study shows that some USP26 variations increase the proportion of XY aneuploid spermatozoa in fertile men, and we identified two families with KS offspring wherein the father of the KS patient harbored a USP26-mutated haplotype, further supporting that paternal USP26 mutation can cause KS offspring production. Thus, some KS should originate from XY spermatozoa, and paternal USP26 mutations increase the risk of producing KS offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.