BackgroundEffective gastric carcinoma (GC) chemotherapy is subject to many in vitro and in vivo barriers, such as tumor microenvironment and multidrug resistance.Materials and methodsHerein, we developed a hyaluronic acid (HA)-modified silica nanoparticle (HA-SiLN/QD) co-delivering quercetin and doxorubicin (DOX) to enhance the efficacy of GC therapy (HA-SiLN/QD). The HA modification was done to recognize overexpressed CD44 receptors on GC cells and mediate selective tumor targeting. In parallel, quercetin delivery decreased the expression of Wnt16 and P-glycoprotein, thus remodeling the tumor microenvironment and reversed multidrug resistance to facilitate DOX activity.ResultsExperimental results demonstrated that HA-SiLN/QD was nanoscaled particles with preferable stability and sustained release property. In vitro cell experiments on SGC7901/ADR cells showed selective uptake and increased DOX retention as compared to the DOX mono-delivery system (HA-SiLN/D).ConclusionIn vivo anticancer assays on the SGC7901/ADR tumor-bearing mice model also revealed significantly enhanced efficacy of HA-SiLN/QD than mono-delivery systems (HA-SiLN/Q and HA-SiLN/D).
Abstract. Colorectal cancer is among the leading causes of cancer-related mortality, one of the main reasons for which is the lack of an effective screening method for early-stage disease. The levels of carcinoembryonic antigen (CEA) and microRNA (miR)-17-3p in the serum of 70 patients with stage I̸II colon cancer and 70 healthy volunteers were determined, and the diagnostic value of CEA plus miR-17-3p detection for colon cancer was assessed. The levels of CEA were measured by a radioimmunoassay method, and those of miR-17-3p using the reverse transcription-quantitative polymerase chain reaction method. miR-16 was used as the endogenous control, as it displayed high stability, high abundance and low variability in the analyzed serum samples. The receiver operating characteristic (ROC) curve analysis indicated the potential diagnostic value of the two markers and the area under the ROC curve (AUC) for CEA and miR-17-3p was 0.719 (95% CI: 0.658-0.843) and 0.807 (95% CI: 0.748-0.906), respectively. At a threshold of 9.6 ng/ml for CEA, the optimal sensitivity and specificity were 74.6 and 84.3%, respectively, in discriminating colon cancer patients from healthy controls. At a threshold of 2.98 for miR-17-3p, the sensitivity and the specificity were 83.6 and 72.9%, respectively. A combined ROC analysis using CEA and miR-17-3p revealed an AUC of 0.929 (95% CI: 0.834-0.978) with a sensitivity of 96.4% and a specificity of 95.7% in discriminating colon cancer patients from healthy controls. In conclusion, both CEA and miR-17-3p were highly expressed in the serum of our series of colon cancer patients. CEA plus miR-17-3p detection significantly increased the sensitivity and specificity in discriminating stage I/II colon cancer patients from healthy controls. Therefore, combined detection of serum CEA and miR-17-3p levels may have the potential to become a new laboratory method for the early clinical diagnosis of colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.