Abstract. In this paper, we propose a modified Lagrange type interpolation operator to approximate functions in Sobolev spaces by continuous piecewise polynomials. In order to define interpolators for "rough" functions and to preserve piecewise polynomial boundary conditions, the approximated functions are averaged appropriately either on d-or (d -1 )-simplices to generate nodal values for the interpolation operator. This combination of averaging and interpolation is shown to be a projection, and optimal error estimates are proved for the projection error.
Abstract. In this paper, we propose a modified Lagrange type interpolation operator to approximate functions in Sobolev spaces by continuous piecewise polynomials. In order to define interpolators for "rough" functions and to preserve piecewise polynomial boundary conditions, the approximated functions are averaged appropriately either on d-or (d -1 )-simplices to generate nodal values for the interpolation operator. This combination of averaging and interpolation is shown to be a projection, and optimal error estimates are proved for the projection error.
Abstract. A natural mixed-element approach for the Stokes equations in the velocity-pressure formulation would approximate the velocity by continuous piecewise-polynomials and would approximate the pressure by discontinuous piecewise-polynomials of one degree lower. However, many such elements are unstable in 2D and 3D. This paper is devoted to proving that the mixed finite elements of this P k -P k−1 type when k ≥ 3 satisfy the stability conditionthe Babuška-Brezzi inequality on macro-tetrahedra meshes where each big tetrahedron is subdivided into four subtetrahedra. This type of mesh simplifies the implementation since it has no restrictions on the initial mesh. The new element also suits the multigrid method.
Abstract. A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed, where the stress is approximated by symmetric H(div)-P k polynomial tensors and the displacement is approximated by C −1 -P k−1 polynomial vectors, for all k ≥ 4. Numerical tests are provided.
This paper introduces a numerical scheme for the time-harmonic Maxwell equations by using weak Galerkin (WG) finite element methods. The WG finite element method is based on two operators: discrete weak curl and discrete weak gradient, with appropriately defined stabilizations that enforce a weak continuity of the approximating functions. This WG method is highly flexible by allowing the use of discontinuous approximating functions on arbitrary shape of polyhedra and, at the same time, is parameter free. Optimal-order of convergence is established for the WG approximations in various discrete norms which are either H 1 -like or L 2 and L 2 -like. An effective implementation of the WG method is developed through variable reduction by following a Schur-complement approach, yielding a system of linear equations involving unknowns associated with element boundaries only. Numerical results are presented to confirm the theory of convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.