We assessed gene expression profiles in 2,752 twins, using a classic twin design to quantify expression heritability and quantitative trait loci (eQTL) in peripheral blood. The most highly heritable genes (~777) were grouped into distinct expression clusters, enriched in gene-poor regions, associated with specific gene function/ontology classes, and strongly associated with disease designation. The design enabled a comparison of twin-based heritability to estimates based on dizygotic IBD sharing and distant genetic relatedness. Consideration of sampling variation suggests that previous heritability estimates have been upwardly biased. Genotyping of 2,494 twins enabled powerful identification of eQTLs, which were further examined in a replication set of 1,895 unrelated subjects. A large number of local eQTLs (6,988) met replication criteria, while a relatively small number of distant eQTLs (165) met quality control and replication standards. Our results provide an important new resource toward understanding the genetic control of transcription.
Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Since regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in this process. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. These effects influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect. We also observe two types of parent-of-origin effects, including classical imprinting and a novel, global allelic imbalance in favor of the paternal allele. We conclude that, as with humans, pervasive regulatory variation influences complex genetic traits in mice and provide a new resource toward understanding the genetic control of transcription in mammals.
Summary: seeQTL is a comprehensive and versatile eQTL database, including various eQTL studies and a meta-analysis of HapMap eQTL information. The database presents eQTL association results in a convenient browser, using both segmented local-association plots and genome-wide Manhattan plots.Availability and implementation: seeQTL is freely available for non-commercial use at http://www.bios.unc.edu/research/genomic_software/seeQTL/.Contact: fred_wright@unc.edu; kxia@bios.unc.eduSupplementary information: Supplementary data are available at Bioinformatics online.
As a promising tool for identifying genetic markers underlying phenotypic differences, genome-wide association study (GWAS) has been extensively investigated in recent years. In GWAS, detecting epistasis (or gene–gene interaction) is preferable over single locus study since many diseases are known to be complex traits. A brute force search is infeasible for epistasis detection in the genome-wide scale because of the intensive computational burden. Existing epistasis detection algorithms are designed for dataset consisting of homozygous markers and small sample size. In human study, however, the genotype may be heterozygous, and number of individuals can be up to thousands. Thus, existing methods are not readily applicable to human datasets. In this article, we propose an efficient algorithm, TEAM, which significantly speeds up epistasis detection for human GWAS. Our algorithm is exhaustive, i.e. it does not ignore any epistatic interaction. Utilizing the minimum spanning tree structure, the algorithm incrementally updates the contingency tables for epistatic tests without scanning all individuals. Our algorithm has broader applicability and is more efficient than existing methods for large sample study. It supports any statistical test that is based on contingency tables, and enables both family-wise error rate and false discovery rate controlling. Extensive experiments show that our algorithm only needs to examine a small portion of the individuals to update the contingency tables, and it achieves at least an order of magnitude speed up over the brute force approach.Contact: xiang@cs.unc.edu
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.