In this paper, the efficacy of porous ceiling treatment to reduce noise levels inside a typical tunnel is examined with a validated modal-based prediction method. It is found that, for a point source, the effect of increasing porous ceiling thickness on sound pressure level (SPL) attenuation
along the tunnel is limited. A porous ceiling with thickness of 0.3 m is comparable with an infinite porous ceiling in middle and high frequency ranges. For a line source, the effect of ceiling thickness on SPL reduc- tion in this typical tunnel is limited. Sound pressure level reduction of
4 dBA is real- ized with 0.3 m porous ceiling, which is the same as infinite ceiling and only 1 dBA smaller than the theoretically optimized value. These results suggest that, in the event only ceiling treatment is considered, 0.3 m porous material is sufficient for noise re- duction in this
typical tunnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.