MicroRNAs (miRNAs) are small noncoding RNAs that are involved in human carcinogenesis and progression. miR-204 has been reported to be a tumor suppressor in several cancer types. However, the function and underlying molecular mechanism of miR-204 in cervical cancer (CC) are still unclear. In the present study, the expression level of miR-204 was measured using the qRT-PCR method in 30 paired CC clinical samples and in 6 CC cell lines. We found that the expression of miR-204 was significantly downregulated in CC tissues and cell lines compared to normal cervical tissues and cell line. miR-204 was overexpressed by transfection with the miR-204 mimic in HeLa and C33A cell lines in the following experiments. The results showed that overexpression of miR-204 dramatically suppressed cell proliferation, migration, and invasion, caused cell cycle arrest at the G0/G1 phase, promoted cell apoptosis in vitro, and inhibited tumor growth in vivo. Western blot results indicated that overexpressing miR-204 decreased the expressions of CDK2, cyclin E, MMP2, MMP9, Bcl2, whereas it enhanced Bax expression and suppressed the activation of the PI3K/AKT signaling pathways in CC cells. Ephrin type B receptor 2 (EphB2) was identified as a direct target of miR-204 in CC cells according to bioinformatics analysis and luciferase reporter assay. Furthermore, knockdown of EphB2 mimicked the inhibitory effect of miR-204 on the proliferation, invasion, and migration of CC cells. These findings suggested that miR-204 might serve as a tumor suppressor in the development of CC by directly targeting EphB2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.