Dehydroepiandrosterone (DHEA) may be beneficial in cardiovascular health, but mechanisms of DHEA action in the cardiovascular system are unclear. We have therefore 1) determined DHEA effects on the proliferation of cultured endothelial cells (EC), 2) compared effects of DHEA with estradiol (E) and testosterone (T), and 3) examined DHEA effects on subcellular messengers. We have in addition examined effects of DHEA (100 mg/d, 3 months) in 36 healthy postmenopausal women on blood pressure, lipids, and endothelial function, assessed noninvasively in large vessels by flow-mediated dilation of the brachial artery during reactive hyperemia, and in small vessels by laser Doppler velocimetry with iontophoresis of acetylcholine. DHEA, E, and T all increased EC proliferation; the effect of E was abolished by the estrogen receptor antagonist ICI 182,780, and that of T was abolished by the androgen receptor antagonist flutamide; neither blocked the effect of DHEA. In vitro, DHEA increased EC expression of endothelial nitric oxide synthase and activity of extracellular signal-regulated kinase 1/2. In vivo, DHEA increased flow-mediated dilation and laser Doppler velocimetry and reduced total plasma cholesterol. Thus, DHEA increases EC proliferation in vitro by mechanism(s) independently of either androgen receptor or estrogen receptor and in vivo enhances large and small vessel EC function in postmenopausal women.
Dehyroepiandrosterone (DHEA), an adrenal-derived steroid, has been clinically implicated in protection against coronary artery disease and experimentally in inhibition of atherosclerosis and plaque progression. Because DHEA is enzymatically metabolized to androgens or estrogens, it is not clear whether DHEA exerts effects directly or after conversion to these hormones, both of which are associated with well-characterized pathways of action. We therefore examined the effects of DHEA on proliferation of human vascular smooth muscle cells (VSMCs) in culture in the presence or absence of the ER antagonist ICI 182,780 and the AR antagonist flutamide and compared them with the effects of 17beta-estradiol, androstenedione, and T. We also determined the affinity of DHEA for ERs and ARs in VSMC and its specific binding in intact cells. To explore a possible mechanism for DHEA action in these cells, we measured the phosphorylation of ERK-1, c-jun N-terminal protein kinase, and p38 (three members of the MAPK superfamily). Both DHEA and 17beta-estradiol significantly inhibited platelet derived growth factor (PDGF)-BB-induced increases in VSMC proliferation, whereas androstenedione and T increased proliferation. Although E2-induced inhibition of the PDGF effect was abolished by ICI 182,780 and T-induced stimulation was abolished by flutamide, neither receptor antagonist altered the inhibitory effect of DHEA. Binding studies confirmed the presence of both ERs and ARs; DHEA showed minimal affinity for either receptor but bound specifically and with high affinity to putative receptors in intact cells. Following 4-h incubation with DHEA (1-100 nM), ERK1 phosphorylation was significantly reduced in a dose-dependent manner, whereas neither c-jun N-terminal protein kinase nor p38 kinase activity was altered by either PDGF-BB or DHEA. DHEA inhibits human VSMC proliferation by a mechanism independent of either ARs or ERs, presumably via a DHEA-specific receptor that involves ERK1 signaling pathways.
Androgens may contribute to higher cardiovascular risk in men via deleterious effects on vascular endothelial cells (EC). We examined the effects of androgens on male human umbilical vein EC (EA.hy926) in culture. [(3)H]Thymidine incorporation assays showed that after 24-h serum deprivation, testosterone (T) (but not dehydroepiandrosterone nor 17beta-E2) induced significant dose-dependent decreases in DNA synthesis (10-16% at 1-100 nmol/liter); the AR antagonist flutamide (100 nmol/liter) abolished this effect of T. After 48-h serum deprivation, typical apoptotic DNA patterns were detected in agarose gels, and the number of floating cells indicative of severe damage was significantly greater after T treatment for 48 and 72 h (13.7 +/- 0.5% and 30.2 +/- 2.5%, respectively) than the control values (9.7 +/- 1.05% and 23.7 +/- 3.0%). Analysis of attached cells by annexin V-fluorescein isothiocyanate/propidium iodide staining showed that after 48-h serum deprivation, T significantly increased the number of cells in the early (16.0 +/- 1.1%) and late (8.3 +/- 0.3%) stages of apoptosis compared with control (6.8 +/- 1.0% and 4.0 +/- 0.2%, respectively); such increases in apoptosis-related damage were also observed, to a lesser degree, in serum-enriched culture. Western blotting showed that B cell leukemia/lymphoma-2 protein (Bcl-2) expression decreased significantly in serum-deprived EC treated with T. Thus, T reduces DNA synthesis and enhances apoptosis after serum deprivation in EC, possibly related to reduced Bcl-2 expression.
Cell adhesion molecules (CAMs) are transmembrane proteins that mediate adhesion and interactions between cells or cell and extra-cellular matrix. Increased expression and activation of CAMs in vascular endothelial cells and circulating leukocytes, as occurring in the settings of inflammation, hypercholesterolemia, hypertension and diabetes, stimulates leukocyte recruitment into the vascular endothelium, an important step in the pathogenesis of atherosclerosis. CAMs are a potential therapeutic target in clinical practice and in recent years pharmaceutical agents with specific effects on the production and function of these molecules have been studied and developed. This article reviews recent progress regarding pathophysiology of CAMs in atherogenesis and pharmaceutical products or chemicals that are active against CAMs, and assesses the possibilities for clinical developments in this area that might enhance the prevention, monitoring and treatment of atherosclerotic cardiovascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.