Block copolymer micelles have been prepared with a dithiomaleimide (DTM) fluorophore located in either the core or shell. Poly(triethylene glycol acrylate)-b-poly(tert-butyl acrylate) (P(TEGA)-b-P(tBA)) was synthesized by RAFT polymerization, with a DTM-functional acrylate monomer copolymerized into either the core forming P(tBA) block or the shell forming P(TEGA) block. Self-assembly by direct dissolution afforded spherical micelles with Rh of ca. 35 nm. Core-labeled micelles (CLMs) displayed bright emission (Φf = 17%) due to good protection of the fluorophore, whereas shell-labeled micelles (SLMs) had lower efficiency emission due to collisional quenching in the solvated corona. The transition from micelles to polymer unimers upon dilution could be detected by measuring the emission intensity of the solutions. For the core-labeled micelles, the fluorescence lifetime was also responsive to the supramolecular state, the lifetime being significantly longer for the micelles (τAv,I = 19 ns) than for the polymer unimers (τAv,I = 9 ns). The core-labeled micelles could also self-report on the presence of a fluorescent hydrophobic guest molecule (Nile Red) as a result of Förster resonance energy transfer (FRET) between the DTM fluorophore and the guest. The sensitivity of the DTM fluorophore to its environment therefore provides a simple handle to obtain detailed structural information for the labeled polymer micelles. A case will also be made for the application superiority of core-labeled micelles over shell-labeled micelles for the DTM fluorophore.
The photophysical properties of gold nanoparticles, AuNPs, with sizes of 13, 50 and 100 nm in diameter, coated with surface-active ruthenium complexes have been studied to investigate the effect of the distance of the ruthenium luminescent centre from the gold surface. Luminescence lifetimes of the three ruthenium probes, RuS1, RuS6 and RuS12, with different length spacer units between the surface active groups and the ruthenium centre were taken. The metal complexes were attached to AuNP13, AuNP50 and AuNP100 via thiol groups using a method of precoating the nanoparticles with a fluorinated surfactant. The luminescence lifetime of the longer spacer unit complex, RuS12, was enhanced by 70% upon attachment to the AuNP when compared to the increase of the short and medium linker unit complexes, RuS1 (20%) and (RuS6 40%) respectively. The effect of the surfactant in the lifetime increase of the ruthenium coated AuNPs was shown to be larger for the medium spacer probe, RuS6. There was no effect of the change of the size of the AuNPs from 13 to 50 or 100 nm.
Optical microscopy techniques are ideal for live cell imaging for real-time nanoparticle tracking of nanoparticle localization. However, the quantification of nanoparticle uptake is usually evaluated by analytical methods that require cell isolation. Luminescent labeling of gold nanoparticles with transition metal probes yields particles with attractive photophysical properties, enabling cellular tracking using confocal and time-resolved microscopies. In the current study, gold nanoparticles coated with a red-luminescent ruthenium transition metal complex are used to quantify and track particle uptake and localization. Analysis of the red-luminescence signal from particles is used as a metric of cellular uptake, which correlates to total cellular gold and ruthenium content, independently measured and correlated by inductively coupled plasma mass spectrometry. Tracking of the luminescence signal provides evidence of direct diffusion of the nanoparticles across the cytoplasmic membrane with particles observed in the cytoplasm and mitochondria as nonclustered “free” nanoparticles. Electron microscopy and inhibition studies identified macropinocytosis of clusters of particles into endosomes as the major mechanism of uptake. Nanoparticles were tracked inside GFP-tagged cells by following the red-luminescence signal of the ruthenium complex. Tracking of the particles demonstrates their initial location in early endosomes and, later, in lysosomes and autophagosomes. Colocalization was quantified by calculating the Pearson’s correlation coefficient between red and green luminescence signals and confirmed by electron microscopy. Accumulation of particles in autophagosomes correlated with biochemical evidence of active autophagy, but there was no evidence of detachment of the luminescent label or breakup of the gold core. Instead, accumulation of particles in autophagosomes caused organelle swelling, breakdown of the surrounding membranes, and endosomal release of the nanoparticles into the cytoplasm. The phenomenon of endosomal release has important consequences for the toxicity, cellular targeting, and therapeutic future applications of gold nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.