Thin section histology is limited in providing 3D structural information, particularly of the intricate morphology of the vasculature. Availability of high spatial resolution imaging for thick samples, would overcome the restriction dictated by low light penetration. Our study aimed at optimizing the procedure for efficient and affordable tissue clearing, along with an appropriate immunofluorescence labeling that will be applicable for high resolution imaging of blood and lymphatic vessels. The new procedure, termed whole organ blood and lymphatic vessels imaging (WOBLI), is based on two previously reported methods, CLARITY and ScaleA2. We used this procedure for the analysis of isolated whole ovary, uterus, lung and liver. These organs were subjected to passive clearing, following fixation, immunolabeling and embedding in hydrogel. Cleared specimens were immersed in ScaleA2 solution until transparency was achieved and imaged using light sheet microscopy. We demonstrate that WOBLI allows detailed analysis and generation of structural information of the lymphatic and blood vasculature from thick slices and more importantly, from whole organs. We conclude that WOBLI offers the advantages of morphology and fluorescence preservation with efficient clearing. Furthermore, WOBLI provides a robust, cost-effective method for generation of transparent specimens, allowing high resolution, 3D-imaging of blood and lymphatic vessels networks.
A number of genetic risk factors have been identified over the past decade for Parkinson’s Disease (PD), with variants in GBA prominent among them. GBA encodes the lysosomal enzyme that degrades the glycosphingolipid, glucosylceramide (GlcCer), with the activity of this enzyme defective in Gaucher disease. Based on the ill-defined relationship between glycosphingolipid metabolism and PD, we now analyze levels of various lipids by liquid chromatography/electrospray ionization-tandem mass spectrometry in four brain regions from age- and sex-matched patient samples, including idiopathic PD, PD patients with a GBA mutation and compare both to control brains (n = 21 for each group) obtained from individuals who died from a cause unrelated to PD. Of all the glycerolipids, sterols, and (glyco)sphingolipids (251 lipids in total), the only lipid class which showed significant differences were the gangliosides (sialic acid-containing complex glycosphingolipids), which were elevated in 3 of the 4 PD-GBA brain regions. There was no clear correlation between levels of individual gangliosides and the genetic variant in Gaucher disease [9 samples of severe (neuronopathic), 4 samples of mild (non-neuronopathic) GBA variants, and 8 samples with low pathogenicity variants which have a higher risk for development of PD]. Most brain regions, i.e. occipital cortex, cingulate gyrus, and striatum, did not show a statistically significant elevation of GlcCer in PD-GBA. Only one region, the middle temporal gyrus, showed a small, but significant elevation in GlcCer concentration in PD-GBA. We conclude that changes in ganglioside, but not in GlcCer levels, may contribute to the association between PD and GBA mutations.
Most lysosomal storage diseases (LSDs) have a significant neurological component, including types 2 and 3 Gaucher disease (neuronal forms of Gaucher disease; nGD). No therapies are currently available for nGD since the recombinant enzymes used in the systemic form of Gaucher disease do not cross the blood–brain barrier (BBB). However, a number of promising approaches are currently being tested, including substrate reduction therapy (SRT), in which partial inhibition of the synthesis of the glycosphingolipids (GSLs) that accumulate in nGD lowers their accumulation. We now induce nGD in mice by injection with conduritol B‐epoxide (CBE), an irreversible inhibitor of acid beta‐glucosidase (GCase), the enzyme defective in nGD, with or without co‐injection with Genz‐667161, a prototype for SRT which crosses the BBB. Significant neuropathology, and a reduction in lifespan, was observed upon CBE injection, and this was largely reversed by co‐injection with Genz‐667161, along with a reduction in glucosylceramide and glucosylsphingosine levels. Analysis of gene expression by RNAseq revealed that Genz‐667161 largely reversed the changes in genes and pathways that were differentially expressed upon CBE injection, specifically pathways of GSL metabolism, lipoproteins and other lipid metabolic pathways, lipid droplets, astrocyte activation, neuronal function, and to some extent, neuroinflammation. Together, this demonstrates the efficacy of SRT to reverse the effects of substrate accumulation on pathological components and pathways in nGD brain.
The lysosome is a central player in the cell, acting as a clearing house for macromolecular degradation, but also plays a critical role in a variety of additional metabolic and regulatory processes. The lysosome has recently attracted the attention of neurobiologists and neurologists since a number of neurological diseases involve a lysosomal component. Among these is Parkinson’s disease (PD). While heterozygous and homozygous mutations in GBA1 are the highest genetic risk factor for PD, studies performed over the past decade have suggested that lysosomal loss of function is likely involved in PD pathology, since a significant percent of PD patients have a mutation in one or more genes that cause a lysosomal storage disease (LSD). Although the mechanistic connection between the lysosome and PD remains somewhat enigmatic, significant evidence is accumulating that lysosomal dysfunction plays a central role in PD pathophysiology. Thus, lysosomal dysfunction, resulting from mutations in lysosomal genes, may enhance the accumulation of α-synuclein in the brain, which may result in the earlier development of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.