Spatial tuning of neocortical pyramidal cells has been observed in diverse cortical regions and is thought to rely primarily on input from the hippocampal formation. Despite the well-studied hippocampal place code, many properties of the neocortical spatial tuning system are still insufficiently understood. In particular, it has remained unclear how the topography of direct anatomical connections from hippocampus to neocortex affects spatial tuning depth, and whether the dynamics of spatial coding in the hippocampal output region CA1, such as remapping in novel environments, is transmitted to the neocortex. Using mice navigating through virtual environments, we addressed these questions in the mouse medial prefrontal cortex, which receives direct input from the hippocampus. We found a rapidly emerging prefrontal representation of space in the absence of task rules, which discriminates familiar from novel environments and is reinstated upon reexposure to the same familiar environment. Topographical analysis revealed a dorsoventral gradient in the representation of the own position, which runs opposite to the innervation density of hippocampal inputs. Jointly, these results reveal a dynamically emerging and topographically organized prefrontal place code during spontaneous locomotion.
Respiration paces brain oscillations and the firing of individual neurons, revealing a profound impact of rhythmic breathing on brain activity. Intriguingly, respiration-driven entrainment of neural activity occurs in a variety of cortical areas, including those involved in higher cognitive functions such as associative neocortical regions and the hippocampus. Here we review recent findings of respiration-entrained brain activity with a particular focus on emotional cognition. We summarize studies from different brain areas involved in emotional behavior such as fear, despair, and motivation, and compile findings of respiration-driven activities across species. Furthermore, we discuss the proposed cellular and network mechanisms by which cortical circuits are entrained by respiration. The emerging synthesis from a large body of literature suggests that the impact of respiration on brain function is widespread across the brain and highly relevant for distinct cognitive functions. These intricate links between respiration and cognitive processes call for mechanistic studies of the role of rhythmic breathing as a timing signal for brain activity.
Nasal breathing affects cognitive functions, but it has remained largely unclear how respiration-driven inputs shape information processing in neuronal circuits. Current theories emphasize the role of neuronal assemblies, coalitions of transiently active pyramidal cells, as the core unit of cortical network computations. Here, we show that respiration-related oscillations (RROs) directly pace the activation of neuronal assemblies in the medial prefrontal cortex (mPFC) of mice. Neuronal assemblies are more efficiently entrained than single neurons and activate preferentially during the descending phase of RROs. At the same time, overlap between individual assemblies is minimized during descending RRO due to the efficient recruitment of GABAergic neurons by assemblies. Our results thus suggest the RROs support cortical operations by defining time windows of enhanced yet segregated assembly activity.
Respiration exerts profound influence on cognition, which is presumed to rely on the generation of local respiration-coherent brain oscillations and the entrainment of cortical neurons. Here, we propose an addition to that view by emphasizing the role of respiration in pacing cortical assemblies (i.e., groups of synchronized, coactive neurons). We review recent findings of how respiration directly entrains identified assembly patterns and discuss how respiration-dependent pacing of assembly activations might be beneficial for cognitive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.