Walking stability is achieved by adjusting the medio-lateral and anterior-posterior dimensions of the base of support (step length and step width, respectively) to contain an extrapolated center of mass. We aimed to calculate total recovery time after different types of perturbations during walking, and use it to compare young and older adults following different types of perturbations. Walking trials were performed in 12 young (age 26.92 ± 3.40 years) and 12 older (age 66.83 ± 1.60 years) adults. Perturbations were introduced at different phases of the gait cycle, on both legs and in anterior-posterior or medio-lateral directions, in random order. A novel algorithm was developed to determine total recovery time values for regaining stable step length and step width parameters following the different perturbations, and compared between the two participant groups under low and high cognitive load conditions, using principal component analysis (PCA). We analyzed 829 perturbations each for step length and step width. The algorithm successfully estimated total recovery time in 91.07% of the runs. PCA and statistical comparisons showed significant differences in step length and step width recovery times between anterior-posterior and medio-lateral perturbations, but no age-related differences. Initial analyses demonstrated the feasibility of comparisons based on total recovery time calculated using our algorithm.
Background Neuropsychological tests of executive function have limited real-world predictive and functional relevance. An emerging solution for this limitation is to adapt the tests for implementation in virtual reality (VR). We thus developed two VR-based versions of the classic Color-Trails Test (CTT), a well-validated pencil-and-paper executive function test assessing sustained (Trails A) and divided (Trails B) attention—one for a large-scale VR system (DOME-CTT) and the other for a portable head-mount display VR system (HMD-CTT). We then evaluated construct validity, test–retest reliability, and age-related discriminant validity of the VR-based versions and explored effects on motor function. Methods Healthy adults (n = 147) in three age groups (young: n = 50; middle-aged: n = 80; older: n = 17) participated. All participants were administered the original CTT, some completing the DOME-CTT (14 young, 29 middle-aged) and the rest completing the HMD-CTT. Primary outcomes were Trails A and B completion times (tA, tB). Spatiotemporal characteristics of upper-limb reaching movements during VR test performance were reconstructed from motion capture data. Statistics included correlations and repeated measures analysis of variance. Results Construct validity was substantiated by moderate correlations between the’gold standard’ pencil-and-paper CTT and the VR adaptations (DOME-CTT: tA 0.58, tB 0.71; HMD-CTT: tA 0.62, tB 0.69). VR versions showed relatively high test–retest reliability (intraclass correlation; VR: tA 0.60–0.75, tB 0.59–0.89; original: tA 0.75–0.85, tB 0.77–0.80) and discriminant validity (area under the curve; VR: tA 0.70–0.92, tB 0.71–0.92; original: tA 0.73–0.95, tB 0.77–0.95). VR completion times were longer than for the original pencil-and-paper test; completion times were longer with advanced age. Compared with Trails A, Trails B target-to-target VR hand trajectories were characterized by delayed, more erratic acceleration and deceleration, consistent with the greater executive function demands of divided vs. sustained attention; acceleration onset later for older participants. Conclusions The present study demonstrates the feasibility and validity of converting a neuropsychological test from two-dimensional pencil-and-paper to three-dimensional VR-based format while preserving core neuropsychological task features. Findings on the spatiotemporal morphology of motor planning/execution during the cognitive tasks may lead to multimodal analysis methods that enrich the ecological validity of VR-based neuropsychological testing, representing a novel paradigm for studying cognitive-motor interactions.
ObjectiveTranslations and adaptations of traditional neuropsychological tests to virtual reality (VR) technology bear the potential to increase their ecological validity since the technology enables simulating everyday life conditions in a controlled manner. The current paper describes our translation of a commonly used neuropsychological test to VR, the Rey Auditory Verbal Learning Test (RAVLT). For this aim, we developed a VR adaptation of the RAVLT (VR-RAVLT) Which is based on a conversation with a secretary in a virtual office using a fully immersive VR system. To validate the VR-RAVLT, we tested its construct validity, its age-related discriminant validity and its test-retest validity in reference to the original gold standard RAVLT (GS-RAVLT).MethodSeventy-eight participants from different age groups performed the GS-RAVLT and the VR-RAVLT tests in a counterbalanced order in addition to other neuropsychological tests. Construct validity was validated using Pearson’s correlations coefficients and serial position effects; discriminant validity was validated using receiver operating characteristic area under the curve values and test-retest reliability was validated using intraclass correlation coefficients.ResultsComparing both RAVLTs’ format results indicates that the VR-RAVLT has comparable construct, discriminant and test–retest validities.Conclusionthe novel VR-RAVLT and the GS-RAVLT share similar psychometric properties suggesting that the two tests measure the same cognitive construct. This is an indication of the feasibility of adapting the RAVLT to the VR environment. Future developments will employ this approach for clinical diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.