SARS-CoV-2 is evolving with increased transmission, host range, pathogenicity, and virulence. The original and mutant viruses escape host innate (Interferon) immunity and adaptive (Antibody) immunity, emphasizing unmet needs for high-yield, commercial-scale manufacturing to produce inexpensive vaccines/boosters for global/equitable distribution. We developed DYAI-100A85, a SARS-CoV-2 spike receptor binding domain (RBD) subunit antigen vaccine expressed in genetically modified thermophilic filamentous fungus, Thermothelomyces heterothallica C1, and secreted at high levels into fermentation medium. The RBD-C-tag antigen strongly binds ACE2 receptorsin vitro. Alhydrogel®‘85’-adjuvanted RDB-C-tag-based vaccine candidate (DYAI-100A85) demonstrates strong immunogenicity, and antiviral efficacy, including in vivo protection against lethal intranasal SARS-CoV-2 (D614G) challenge in human ACE2-transgenic mice. No loss of body weight or adverse events occurred. DYAI-100A85 also demonstrates excellent safety profile in repeat-dose GLP toxicity study. In summary, subcutaneous prime/boost DYAI-100A85 inoculation induces high titers of RBD-specific neutralizing antibodies and protection of hACE2-transgenic mice against lethal challenge with SARS-CoV-2. Given its demonstrated safety, efficacy, and low production cost, vaccine candidate DYAI-100 received regulatory approval to initiate a Phase 1 clinical trial to demonstrate its safety and efficacy in humans.
Hyper-immune antisera from large mammals, in particular horses, are routinely used for life-saving anti-intoxication intervention. While highly efficient, the use of these immunotherapeutics is complicated by possible recipient reactogenicity and limited availability. Accordingly, there is an urgent need for alternative improved next-generation immunotherapies to respond to this issue of high public health priority. Here, we document the development of previously unavailable tools for equine antibody engineering. A novel primer set, EquPD v2020, based on equine V-gene data, was designed for efficient and accurate amplification of rearranged horse antibody V-segments. The primer set served for generation of immune phage display libraries, representing highly diverse V-gene repertoires of horses immunized against botulinum A or B neurotoxins. Highly specific scFv clones were selected and expressed as full-length antibodies, carrying equine V-genes and human Gamma1/Lambda constant genes, to be referred as “Centaur antibodies”. Preliminary assessment in a murine model of botulism established their therapeutic potential. The experimental approach detailed in the current report, represents a valuable tool for isolation and engineering of therapeutic equine antibodies.
A novel COVID-19 vaccine (BriLife®) has been developed by the Israel Institute for Biological Research (IIBR) to prevent the spread of the SARS-CoV-2 virus throughout the population in Israel. One of the components in the vaccine formulation is tris(hydroxymethyl)aminomethane (tromethamine, TRIS), a buffering agent. TRIS is a commonly used excipient in various approved parenteral medicinal products, including the mRNA COVID-19 vaccines produced by Pfizer/BioNtech and Moderna. TRIS is a hydrophilic basic compound that does not contain any chromophores/fluorophores and hence cannot be retained and detected by reverse-phase liquid chromatography (RPLC)-ultraviolet (UV)/fluorescence methods. Among the few extant methods for TRIS determination, all exhibit a lack of selectivity and/or sensitivity and require laborious sample treatment. In this study, LC–mass spectrometry (MS) with its inherent selectivity and sensitivity in the multiple reaction monitoring (MRM) mode was utilized, for the first time, as an alternative method for TRIS quantitation. Extensive validation of the developed method demonstrated suitable specificity, linearity, precision, accuracy and robustness over the investigated concentration range (1.2–4.8 mg/mL). Specifically, the R2 of the standard curve was >0.999, the recovery was >92%, and the coefficient of variance (%CV) was <12% and <6% for repeatability and intermediate precision, respectively. Moreover, the method was validated in accordance with strict Good Manufacturing Practice (GMP) guidelines. The developed method provides valuable tools that pharmaceutical companies can use for TRIS quantitation in vaccines and other pharmaceutical products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.