Simpur leaf (Dillenia indica L.) as a traditional medicinal plant spread in the Bangka Belitung Islands. Secondary metabolites contained in simpur leaf extract are alkaloids, flavonoids, phenols, tannins, saponins, steroids, and terpenoids. Compounds that provide pharmacological properties such as polyphenols are unstable to the influence of temperature and high light intensity so that they are easily oxidized. The challenge to protect the damage of these compounds can be done by means of nanoencapsulation. This study aims to determine the size and efficiency of the nanoencapsulation of simpur leaf extract and its antibacterial bioactivity against Staphylococcus aureus and Escherichia coli bacteria. Manufacture of nanoencapsulation using the nanoprecipitation method with the constituent components of PCL (1.5 g), Tween 80 (50 mL), simpur leaf extract (0.15 g; 0.25 g; 0.35 g). Antibacterial activity testing using disc diffusion method. Nanoencapsulated extract mass 0.15 g; 0.25 g; and 0.35 g have sizes of 167.2 nm, respectively; 208.7 nm; and 229.1 nm and encapsulation efficiency of 88.21%; 56.77%; and 5.34%. The antibacterial activity of the nanoencapsulation and extract was more effective in inhibiting the growth of Staphylococcus aureus bacteria than Escherichia coli bacteria. Strength of activity against Staphylococcus aureus bacteria in nanoencapsulated extracts was categorized as moderate to strong and Escherichia coli bacteria in extracts were categorized as moderate.
In this article, the author reports that the manufacture of edible films has been carried out as well as an analysis of the effect of adding starch on the functional characteristics of edible films. The stages of making bioplastics include extracting starch from empty oil palm fruit bunches, making edible plastics and material characterization. In the manufacture of bioplastics, variations in starch content are carried out to determine the most appropriate starch content in producing edible films. Based on the results of the FTIR characterization of edible films with variations in the amount of starch, it shows that the more the amount of starch added, the hydrophilic properties of the edible film will increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.