In recent years, the influence of alpha (7–13 Hz) phase on visual processing has received a lot of attention. Magneto‐/encephalography (M/EEG) studies showed that alpha phase indexes visual excitability and task performance. Studies with transcranial alternating current stimulation (tACS) aim to modulate oscillations and causally impact task performance. Here, we applied right occipital tACS (O2 location) to assess the functional role of alpha phase in a series of experiments. We presented visual stimuli at different pre‐determined, experimentally controlled, phases of the entraining tACS signal, hypothesizing that this should result in an oscillatory pattern of visual performance in specifically left hemifield detection tasks. In experiment 1, we applied 10 Hz tACS and used separate psychophysical staircases for six equidistant tACS‐phase conditions, obtaining contrast thresholds for detection of visual gratings in left or right hemifield. In experiments 2 and 3, tACS was at EEG‐based individual peak alpha frequency. In experiment 2, we measured detection rates for gratings with (pseudo‐)fixed contrast. In experiment 3, participants detected brief luminance changes in a custom‐built LED device, at eight equidistant alpha phases. In none of the experiments did the primary outcome measure over phase conditions consistently reflect a one‐cycle sinusoid. However, post hoc analyses of reaction times (RT) suggested that tACS alpha phase did modulate RT for specifically left hemifield targets in both experiments 1 and 2 (not measured in experiment 3). This observation requires future confirmation, but is in line with the idea that alpha phase causally gates visual inputs through cortical excitability modulation.
In recent years the influence of alpha (7-13 Hz) phase on visual processing has received a lot of attention. Magneto-/encephalography (M/EEG) studies showed that alpha phase indexes visual excitability and task performance. If occipital alpha phase is functionally relevant, the phase of occipital alpha-frequency transcranial alternating current stimulation (tACS) could modulate visual processing. Visual stimuli presented at different pre-determined, experimentally controlled, phases of the entraining tACS signal should then result in an oscillatory pattern of visual performance. We studied this in a series of experiments. In experiment one, we applied 10 Hz tACS to right occipital cortex (O2) and used independent psychophysical staircases to obtain contrast thresholds for detection of visual gratings in left or right hemifield, in six equidistant tACS phase conditions. In experiments two and three, tACS was at EEG-based individual peak alpha frequency. In experiment two, we measured detection rates for gratings with (pseudo-)fixed contrast levels. In experiment three, participants detected brief luminance changes in a custom-built LED device, at eight equidistant alpha phases. In none of the experiments did the primary outcome measure over phase conditions consistently reflect a one-cycle sinusoid as predicted. However, post-hoc analyses of reaction times (RT) suggested that tACS alpha phase did modulate RT in both experiments 1 and 2 (not measured in experiment 3). This observation is in line with the idea that alpha phase causally gates visual inputs through cortical excitability modulation.
Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.
Rhythmic stimulation can be applied to modulate neuronal oscillations. Such ‘entrainment’ is optimized when stimulation frequency is individually calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short electroencephalography (EEG) measurements at rest or during an attention task (cognitive state), using single parieto‐occipital electrodes in 24 participants on 4 days (between‐sessions), with multiple measurements over an hour on 1 day (within‐session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional ‘maximum’ method and a ‘Gaussian fit’ method. IAF was reliable within‐ and between‐sessions for both cognitive states and hemispheres, though task‐IAF estimates tended to be more variable. Overall, the ‘Gaussian fit’ method was more reliable than the ‘maximum’ method. Furthermore, we evaluated how far from an approximated ‘true’ task‐related IAF the selected ‘stimulation frequency’ was, when calibrating this frequency based on a short rest‐EEG, a short task‐EEG, or simply selecting 10 Hz for all participants. For the ‘maximum’ method, rest‐EEG calibration was best, followed by task‐EEG, and then 10 Hz. For the ‘Gaussian fit’ method, rest‐EEG and task‐EEG‐based calibration were similarly accurate, and better than 10 Hz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.