Many stroke survivors’ quality of life is impaired. Few studies of factors influencing their quality of life have been based on the factors tested by the short form 36 instrument. This study did so with 308 physically disabled stroke survivors in rural China. Principal components analysis was applied to refine the dimension structure of the short form 36 assessment, followed by backward multiple linear regression analysis to determine the independent factors influencing quality of life. The structure revealed differed from the generic structure in showing that the mental health and vitality dimensions are not unidimensional. Subjects who reported access to the outdoors as convenient demonstrated better quality of life in all dimensions. Those who exercised regularly achieved better social functioning and negative mental health scores. Other factors influencing a better quality of life in terms of physical functioning were younger age and not being married. Being older and better educated predicted better role-emotion scores. Being female correlated with better social functioning scores, while men scored better on bodily pain. Being less educated predicted higher negative mental health, while being less disabled predicted better physical and social functioning. The results suggest that the SF-36’s dimension structure should be re-evaluated before using it to assess stroke survivors.
BackgroundThis study investigated the cortical activation mechanism underlying locomotor control during healthy and hemiplegic walking.MethodsA total of eight healthy individuals with right leg dominance (male patients, 75%; mean age, 40.06 ± 4.53 years) and six post-stroke patients with right hemiplegia (male patients, 86%; mean age, 44.41 ± 7.23 years; disease course, 5.21 ± 2.63 months) completed a walking task at a treadmill speed of 2 km/h and a functional electrical stimulation (FES)-assisted walking task, respectively. Functional near-infrared spectroscopy (fNIRS) was used to detect hemodynamic changes in neuronal activity in the bilateral sensorimotor cortex (SMC), supplementary motor area (SMA), and premotor cortex (PMC).ResultsfNIRS cortical mapping showed more SMC-PMC-SMA locomotor network activation during hemiplegic walking than during healthy gait. Furthermore, more SMA and PMC activation in the affected hemisphere was observed during the FES-assisted hemiplegic walking task than during the non-FES-assisted task. The laterality index indicated asymmetric cortical activation during hemiplegic gait, with relatively greater activation in the unaffected (right) hemisphere during hemiplegic gait than during healthy walking. During hemiplegic walking, the SMC and SMA were predominantly activated in the unaffected hemisphere, whereas the PMC was predominantly activated in the affected hemisphere. No significant differences in the laterality index were noted between the other groups and regions (p > 0.05).ConclusionAn important feature of asymmetric cortical activation was found in patients with post-stroke during the walking process, which was the recruitment of more SMC-SMA-PMC activation than in healthy individuals. Interestingly, there was no significant lateralized activation during hemiplegic walking with FES assistance, which would seem to indicate that FES may help hemiplegic walking recover the balance in cortical activation. These results, which are worth verifying through additional research, suggest that FES used as a potential therapeutic strategy may play an important role in motor recovery after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.