This paper studies, under some natural monotonicity conditions, the theory (existence and uniqueness, a priori estimate, continuous dependence on a parameter) of forward-backward stochastic differential equations and their connection with quasilinear parabolic partial differential equations. We use a purely probabilistic approach, and allow the forward equation to be degenerate.
In this paper, we study a multi-dimensional backward stochastic differential equation (BSDE) with oblique reflection, which is a BSDE reflected on the boundary of a special unbounded convex domain along an oblique direction, and which arises naturally in the study of optimal switching problem. The existence of the adapted solution is obtained by the penalization method, the monotone convergence, and the a priori estimations. The uniqueness is obtained by a verification method (the first component of any adapted solution is shown to be the vector value of a switching problem for BSDEs). As applications, we apply the above results to solve the optimal switching problem for stochastic differential equations of functional type, and we give also a probabilistic interpretation of the viscosity solution to a system of variational inequalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.