In this work, rice husk biomass was utilized as an abundant source to controllably prepare high-quality graphene quantum dots (GQDs) with a yield of ca. 15 wt %. The size, morphology, and structure of the rice-husk-derived GQDs were determined by high-resolution transmission electron microscopy, atomic force microscopy, and Raman spectroscopy. The as-fabricated GQDs can be stably dispersed in water, exhibiting bright and tunable photoluminescence. A cell viability test further confirmed that the GQDs possess excellent biocompatibility, and they can be easily adopted for cell imaging via a facile translocation into the cytoplasm. It is worth noting that mesoporous silica nanoparticles were also synthesized as a byproduct during the fabrication of GQDs. As such, our strategy achieves a comprehensive utilization of rice husks, exhibiting tremendous benefits on both the economy and environment.
Crystalline manganese
oxides have attracted the most attention
in aqueous zinc-ion batteries due to their diverse nanostructures
and low cost. However, extensive studies on amorphous manganese oxides
are lacking. Herein, we report a mesoporous amorphous manganese oxide
(UCT-1-250) as a cathode material with high capacity (222 mAh g–1), good cyclability (57% capacity retention after
200 cycles), and an acceptable discharge plateau (between 1.2 and
1.4 V). An approach to mechanistic studies was performed by comparison
of UCT-1-250 and other crystalline manganese oxides through electrochemical,
elemental, and structural analyses. An in situ conversion to ZnMn2O4 spinel phase after initial cycling contributes
to the high performance. The irreversible capacity fading is due to
the formation of the woodruffite phase.
Air pollution issues due to soot/diesel particulate matter (DPM) emitted from incomplete burning of diesel fuel have become a global issue in this century. A series of manganese oxides, namely amorphous manganese oxide (Meso-Mn-A), Mn2O3 (Meso-Mn2O3), MnO2 (epsilon phase) (Meso-ϵ-MnO2) and octahedral molecular sieves MnO2 (Meso-OMS-2) was synthesized via a soft template method. The potential of mesoporous manganese oxides in acceleration of NO2 assisted catalytic oxidation of diesel soot (Printex-U) under lean conditions was investigated. The physiochemical properties of synthesized materials were systematically characterized by X-ray diffraction, N2-sorption, high-resolution transmission electron microscopy, and H2-temperature programmed reduction. A series of temperature programmed oxidation experiments was carried out to investigate the effect of feed gas composition on activity of the catalyst, and TGA-MS experiments were done to calculate the kinetic energy for each system. Mesoporous manganese oxides were found to be effective for complete oxidation of diesel soot under exhaust gas temperatures, and activities of all the manganese oxides were increased in the presence of NO2 in the feed gas. Meso-ϵ-MnO2 possesses the highest performance, exhibiting the lowest Ti and Tm (230 °C and 305 °C), the narrowest temperature range (75 °C), and the lowest Ea (298 kJ/mol).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.