Long non-coding RNAs (lncRNAs) play an important role in the regulation of key cellular processes in early development and cancer. LncRNA Oip5-as1 facilitates stem cell self-renewal in mouse by sponging mmu-miR-7 and modulating NANOG level, yet its role in cancer is less understood. We analyzed OIP5-AS1 expression in oral tumors and in TCGA datasets. We observed overexpression of OIP5-AS1 in oral tumors (P < 0.001) and in tumors of epithelial origin from TCGA. OIP5-AS1 expression was strongly associated with undifferentiated tumors (P = 0.0038). In silico analysis showed miR-7 binding site is conserved in mouse and human OIP5-AS1. However, human NANOG 3′-UTR lost the binding site for hsa-miR-7a-3. Therefore, we screened for other miRNAs that can be sponged by OIP5-AS1 and identified six potential miRNAs and their downstream target genes. Expression analysis showed downregulation of miRNAs and upregulation of downstream target genes, particularly in undifferentiated tumors with high-level of OIP5-AS1 suggesting OIP5-AS1 could post-transcriptionally modulate the downstream target genes. Further, systematic epigenomic analysis of OIP5-AS1 promoter revealed binding motifs for MYC, NANOG and KLF4 suggesting that OIP5-AS1 could be transactivated by stemness-associated transcription factors in cancer. OIP5-AS1 overexpression in undifferentiated oral tumors may be suggestive of enhanced cancer stemness, and consequently, poor clinical outcome.
Tyrosine kinase inhibitor is an effective chemo-therapeutic drug against tumors with deregulated EGFR pathway. Recently, a genetic variant rs10251977 (G>A) in exon 20 of EGFR reported to act as a prognostic marker for HNSCC. Genotyping of this polymorphism in oral cancer patients showed a similar frequency in cases and controls. EGFR-AS1 expressed significantly high level in tumors and EGFR-A isoform expression showed significant positive correlation (r = 0.6464, p < 0.0001) with reference to EGFR-AS1 expression levels, consistent with larger TCGA HNSCC tumor dataset. Our bioinformatic analysis showed enrichment of alternative splicing marks H3K36me3 and presence of intronic polyA sites spanning around exon 15a and 15b of EGFR facilitates skipping of exon 15b, thereby promoting the splicing of EGFR-A isoform. In addition, high level expression of PTBP1 and its binding site in EGFR and EGFR-AS1 enhances the expression of EGFR-A isoform (r = 0.7404, p < 0.0001) suggesting that EGFR-AS1 expression modulates the EGFR-A and D isoforms through alternative splicing. In addition, this polymorphism creates a binding site for miR-891b in EGFR-AS1 and may negatively regulate the EGFR-A. Collectively, our results suggested the presence of genetic variant in EGFR-AS1 modulates the expression of EGFR-D and A isoforms.
LncRNA OIP5-AS1 is overexpressed in undifferentiated oral tumors and integrated analysis identifies as a downstream effector of stemness-associated transcription factors. Correspondence to: A. K. Munirajan, email: akmunirajan@gmail.com; akmunirajan@unom.ac.in.
GanesanAll rights reserved. No reuse allowed without permission.(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.Thecopyright holder for this preprint . http://dx.doi.org/10.1101/285270 doi: bioRxiv preprint first posted online Mar. 19, 2018; 2
AbstractLong non-coding RNAs (lncRNAs) play an important role in the regulation of key cellular processes in early development and in cancer. LncRNA Oip5-as1 facilitates stem cell self-renewal in mouse by sponging mmu-miR-7 and modulating NANOG level, yet its role in cancer is less understood. We analyzed OIP5-AS1 expression in oral tumors and in TCGA datasets. We observed overexpression of OIP5-AS1 in oral tumors (P<0.001) and in tumors of epithelial origin from TCGA. OIP5-AS1 expression was strongly associated with undifferentiated tumors (P=0.0038). In silico analysis showed miR-7 binding site is conserved in mouse and human OIP5-AS1. However, human NANOG 3`-UTR lost the binding site for hsa-miR-7a-3. Therefore, we screened for other miRNAs that can be sponged
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.