Given its significant role in the maintenance of genomic stability, histone methylation has been postulated to regulate DNA repair. Histone methylation mediates localization of 53BP1 to a DNA double-strand break (DSB) during homologous recombination repair, but a role in DSB repair by nonhomologous end-joining (NHEJ) has not been defined. By screening for histone methylation after DSB induction by ionizing radiation we found that generation of dimethyl histone H3 lysine 36 (H3K36me2) was the major event.Using a novel human cell system that rapidly generates a single defined DSB in the vast majority of cells, we found that the DNA repair protein Metnase (also SETMAR), which has a SET histone methylase domain, localized to an induced DSB and directly mediated the formation of H3K36me2 near the induced DSB. This dimethylation of H3K36 improved the association of early DNA repair components, including NBS1 and Ku70, with the induced DSB, and enhanced DSB repair. In addition, expression of JHDM1a (an H3K36me2 demethylase) or histone H3 in which K36 was mutated to A36 or R36 to prevent H3K36me2 formation decreased the association of early NHEJ repair components with an induced DSB and decreased DSB repair. Thus, these experiments define a histone methylation event that enhances DNA DSB repair by NHEJ.double-strand break | I-Sce-I | chromatin immunoprecipitation | MRN complex | mathematical modeling H istone methylation is highly regulated by a family of proteins termed histone methylases, which usually share a SET domain (1-3). Histone methylation plays a key role in chromatin remodeling and as such regulates transcription, replication, cell differentiation, genome stability, and apoptosis (1-3). Because of its role in replication and genome stability, histone methylation has been hypothesized to play an important role in DNA repair. DNA double-strand breaks (DSBs) are a cytotoxic form of DNA damage that disrupts many of the cellular functions regulated by histone methylation described above (4-6). Previous reports indicate that histone methylation may be important in DNA DSB repair by homologous recombination: The DSB repair component 53BP1, which is required for proper homologous recombination, is recruited to sites of damage by methylated histone H3 lysine 79 (H3K79) and histone H4 lysine 20 (H4K20) (7-9). However, neither H3K79 nor H4K20 methylation is induced by DNA damage (9), so other histone methylation events at sites of DNA damage have been sought. In addition, a mechanism by which histone methylation might regulate NHEJ DSB repair has yet to be defined. In this study, a survey of histone methylation events after DSB induction revealed that the major immediate H3 methylation event is H3K36me2.Metnase is a DNA DSB repair component that is a fusion of a SET histone methylase domain with a nuclease domain and a domain from a member of the transposase/integrase family (10-14). We showed previously that Metnase enhances nonhomologous end-joining (NHEJ) repair of, and survival after, DNA DSBs, and that its SET dom...
Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylation of downstream effectors. While there has been a distinguished effort in identifying effectors of Chk1 activity, there are still mechanisms of its activities that are yet to be identified. Metnase/SETMAR is a SET and transposase domain protein that promotes both DNA double strand break (DSB) repair and re-start of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild type (wt) Metnase associates with chromatin near an artificially induced DSB in an engineered cell system. However, an S495A Metnase mutant, which could not be phosphorylated by Chk1, had a defect in its DSB chromatin association. The S495A mutant also failed to support repair of an induced DSB when compared with wild type (wt) Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared to wt Metnase. Thus, S495 phosphorylation of Metnase differentiates between its two main functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart.
Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be fully elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited lipid dysmetabolism and deficits in phagocytosis, a critical microglia function. Our cumulative data implicate an effect of ALS-linked PFN1 on the autophagy pathway, including enhanced binding of mutant PFN1 to the autophagy signaling molecule PI3P, as an underlying cause of defective phagocytosis in ALS-PFN1 iMGs. Indeed, phagocytic processing was restored in ALS-PFN1 iMGs with Rapamycin, an inducer of autophagic flux. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and highlight microglia vesicular degradation pathways as potential therapeutic targets for these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.