Complete dechlorination of trichloroethene (TCE) by Dehalococcoides mccartyi is catalyzed by reductive dehalogenases (RDases), which possess cobalamin as the crucial cofactor. However, virtually all D. mccartyi isolated thus far are corrinoid auxotrophs. The exogenous addition of commercially available cobalamin for TCE-contaminated site decontamination is costly. In this study, TCE reduction by a D. mccartyi-containing microbial consortium utilizing biosynthetic cobalamin generated by interior corrinoid-producing organisms within this microbial consortium was studied. The results confirmed that subcultures without exogenous cobalamin in the medium were apparently unaffected and were able to successively metabolize TCE to nonchlorinated ethene. The 2-bromoethanesulfonate and ampicillin resistance tests results suggested that ampicillin-sensitive bacteria rather than methanogenic archaea within this microbial consortium were responsible for biosynthesizing cobalamin. Moreover, relatively stable carbon isotopic enrichment factor (ɛ-carbon) values of TCE were obtained regardless of whether exogenous cobalamin or selective inhibitors existed in the medium, indicating that the cobalamin biosynthesized by these organisms was absorbed and utilized by D. mccartyi for RDase synthesis and eventually participated in TCE reduction. Finally, the Illumina MiSeq sequencing analysis indicated that Desulfitobacterium and Acetobacterium in this microbial consortium were responsible for the de novo cobalamin biosynthesis to fulfill the requirements of D. mccartyi for TCE metabolism.
Completely dechlorinating of trichloroethene (TCE) by Dehalococcoides mccartyi (D.mccartyi) is catalyzed by reductive dehalogenases (RDases) which possess cobalamin as the crucial cofactor, whereas virtually all pure D.mccartyi strains isolated thus far are corrinoid auxotrophs. Exogenous addition of commercially available cobalamin for real TCE-contaminated site decontamination is deemed to be unrealistic. In this study, TCE reduction by a D.mccartyi-containing microbial consortium utilizing biosynthetic cobalamin generated by interior corrinoid-producing organisms within this mixed consortia was studied. The results confirmed that subcultures with exogenous cobalamin omitting from the medium apparently were impervious and enabled to successively metabolize TCE to non-chlorinated ethene. The 2-bromoethanesulfonate and ampicillin resistance tests results suggested that bacteria (particularly certain ampicillin-sensitive ones) rather than methanogenic archaea within this microbial consortium were responsible for biosynthesizing cobalamin. Moreover, relative stable Ɛ-carbon values of TCE among treatments in disregard of whether exogenous cobalamin or selective inhibitors were existed in the medium also speculated that cobalamin biosynthesized by these organisms was enable to uptake and utilize by D.mccartyi for RDases synthesis and eventually participated in TCE reduction. Finally, the Illumina MiSeq sequencing analysis indicated that Desulfitobacterium and Acetobacterium in this microbial consortium probably both were in charge of de novo cobalamin biosynthesis to fulfillment the requirements of D.mccartyi for TCE metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.