Hybrid off-grid power systems with different renewable and non-renewable energy sources, such as wind, photovoltaics, and diesel generation, have a wide application scope in regions where grid extension is not possible. To supply quality power, hybrid off-grid power systems need proper reactive power management to deal with randomly changing load and supply. In particular, to realize dependable and quality power supply, hybrid off-grid power systems require suitable and efficient control techniques. A properly tuned controller of reactive power sources is crucial to maintain a prescribed voltage profile. Computational intelligence techniques such as particle swarm optimization can provide desired and acceptable solutions for optimization problems. In this study, we applied computational intelligent techniques for optimal control of reactive power sources, such as photovoltaic inverters and automatic voltage regulators for synchronous generators in diesel engines, to investigate dynamic voltage profile stability through reactive power management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.