The information and resources generated from diverse "omics" technologies provide opportunities for producing novel biological knowledge. It is essential to integrate various kinds of biological information and large-scale omics data sets through systematic analysis in order to describe and understand complex biological phenomena. For this purpose, we have developed a Web-based system, Plant MetGenMAP, which can comprehensively integrate and analyze large-scale gene expression and metabolite profile data sets along with diverse biological information. Using this system, significantly altered biochemical pathways and biological processes under given conditions can be retrieved rapidly and efficiently, and transcriptional events and/or metabolic changes in a pathway can be easily visualized. In addition, the system provides a unique function that can identify candidate promoter motifs associated with the regulation of specific biochemical pathways. We demonstrate the functions and application of the system using data sets from Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum), respectively. The results obtained by Plant MetGenMAP can aid in a better understanding of the mechanisms that underlie interesting biological phenomena and provide novel insights into the biochemical changes associated with them at the gene and metabolite levels. Plant MetGenMAP is freely available at http://bioinfo.bti.cornell.edu/tool/MetGenMAP.
A single nucleotide polymorphism (SNP) associated with pungency was detected within an expressed sequence tag (EST) of 307 bp. This fragment was identified after expression analysis of the EST clone SB2-66 in placenta tissue of Capsicum fruits. Sequence alignments corresponding to this new fragment allowed us to identify an SNP between pungent and non-pungent accessions. Two methods were chosen for the development of the SNP marker linked to pungency: tetra-primer amplification refractory mutation system-PCR (tetra-primer ARMS-PCR) and cleaved amplified polymorphic sequence. Results showed that both methods were successful in distinguishing genotypes. Nevertheless, tetra-primer ARMS-PCR was chosen for SNP genotyping because it was more rapid, reliable and less cost-effective. The utility of this SNP marker for pungency was demonstrated by the ability to distinguish between 29 pungent and non-pungent cultivars of Capsicum annuum. In addition, the SNP was also associated with phenotypic pungent character in the tested genotypes of C. chinense, C. baccatum, C. frutescens, C. galapagoense, C. eximium, C. tovarii and C. cardenasi. This SNP marker is a faster, cheaper and more reproducible method for identifying pungent peppers than other techniques such as panel tasting, and allows rapid screening of the trait in early growth stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.